学习目标
- SpringData Redis
- 缓存首页内容
1.SpringData Redis
1.1.Spring Data 介绍
Spring Data是一个用于简化数据库访问的开源框架。其主要目标是使得对数据的访问变得方便快捷,包含多个子项目:
-
Spring Data JDBC- 对JDBC的Spring Data存储库支持。
-
Spring Data JPA - 对JPA的Spring Data存储库支持。
-
Spring Data MongoDB - 对MongoDB的基于Spring对象文档的存储库支持。
-
Spring Data Redis - 从Spring应用程序轻松配置和访问Redis。
… …
1.2.Spring Data Redis 介绍
Spring Data Redis 是属于 Spring Data 下的一个模块,作用就是简化对于 redis 的操做。
spring-data-redis针对jedis提供了如下功能:
-
提供了一个高度封装的“RedisTemplate”类,里面封装了对于Redis的五种数据结构的各种操作,包括:
- redisTemplate.opsForValue():操作字符串 - redisTemplate.opsForHash():操作hash - redisTemplate.opsForList():操作list - redisTemplate.opsForSet():操作set - redisTemplate.opsForZSet():操作zset
-
SpringBoot2.x后RedisTemplate采用是lettuce(基于netty采用异步非阻塞式lO)进行通信,大并发下比jedis效率更高。
-
RedisTemplate模板使用序列化器操作redis数据,预定义的序列化方案有:
序列化器 说明 JdkSerializationRedisSerializer POJO对象的存取场景,使用JDK本身序列化机制,将pojo类通过ObjectInputstream/ObjectOutputstream进行序列化操作,最终redis-server中将存储字节序列。是目前最常用的序列化策略。 stringRedisSerializer Key或者value为字符串的场景,根据指定的charset对数据的字节序列编码成string,是"new String(bytes,charset)"和“string.getBytes(charset)"的直接封装。是最轻量级和高效的策略。 GenericJackson2JsonRedisSerializer jackson-json工具提供了javabean与json之间的转换能力,可以将pojo实例序列化成json格式存储在redis中,也可以将json格式的数据转换成pojo实例。
1.3.Spring Data Redis 使用
1.3.1.创建工程
1.3.2.pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.3.2.RELEASE</version>
</parent>
<groupId>com.bjpowernode</groupId>
<artifactId>springdata_redis</artifactId>
<version>1.0-SNAPSHOT</version>
<!-- 项目源码及编译输出的编码 -->
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
<!-- 项目编译JDK版本 -->
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
<dependencies>
<!-- springBoot的启动器 -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<!-- Spring Data Redis的启动器 -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
<!--junit 的启动器-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
</dependency>
</dependencies>
</project>
1.3.3.application.yml
spring:
redis:
cluster:
nodes:
- 192.168.204.131:7001
- 192.168.204.131:7002
- 192.168.204.131:7003
- 192.168.204.131:7004
- 192.168.204.131:7005
- 192.168.204.131:7006
jedis:
pool:
max-active: 20 #连接池最大连接数
max-idle: 10 #连接池中的最大空闲连接
min-idle: 5 # 连接池中的最小空闲连接
1.3.4.config
package com.powershop.config;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.connection.jedis.JedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.JdkSerializationRedisSerializer;
import org.springframework.data.redis.serializer.StringRedisSerializer;
/**
* 完成对Redis的整合的一些配置
*/
@Configuration
public class RedisConfig {
/**
* 创建RedisTemplate:用于执行Redis操作的方法
*/
@Bean
public RedisTemplate<String, Object> getRedisTemplate(RedisConnectionFactory factory) {
RedisTemplate<String, Object> template = new RedisTemplate<String, Object>();
template.setConnectionFactory(factory);
return template;
}
}
1.3.5.App
package com.powershop;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class App {
public static void main(String[] args) {
SpringApplication.run(App.class, args);
}
}
1.3.6.pojo
package com.powershop.pojo;
import java.io.Serializable;
public class User implements Serializable {
private Integer id;
private String name;
private Integer age;
public Integer getId() {
return id;
}
public void setId(Integer id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public Integer getAge() {
return age;
}
public void setAge(Integer age) {
this.age = age;
}
@Override
public String toString() {
return "User [id=" + id + ", name=" + name + ", age=" + age + "]";
}
}
1.3.7.测试
package com.powershop.test;
import com.powershop.RedisApp;
import com.powershop.pojo.User;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.GenericJackson2JsonRedisSerializer;
import org.springframework.data.redis.serializer.JdkSerializationRedisSerializer;
import org.springframework.data.redis.serializer.StringRedisSerializer;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;
@RunWith(SpringJUnit4ClassRunner.class)
@SpringBootTest(classes = {RedisApp.class})
public class RedisTest {
//默认key-value的序列化器是JdkSerializationRedisSerializer
@Autowired
private RedisTemplate redisTemplate;
/**
* 1、StringRedisSerializer:key或value是字符串时使用
*/
@Test
public void testSetStr(){
redisTemplate.setKeySerializer(new StringRedisSerializer());
redisTemplate.setValueSerializer(new StringRedisSerializer());
redisTemplate.opsForValue().set("str", "张三丰");
}
@Test
public void testGetStr(){
redisTemplate.setKeySerializer(new StringRedisSerializer());
redisTemplate.setValueSerializer(new StringRedisSerializer());
String str = (String) redisTemplate.opsForValue().get("str");
System.out.println(str);
}
/**
* 2、JdkSerializationRedisSerializer:pojo<----->字节序列,大小243,乱码
*/
@Test
public void testSetPojo(){
User user = new User();
user.setId(1);
user.setName("张三丰");
user.setAge(140);
redisTemplate.setKeySerializer(new StringRedisSerializer());
redisTemplate.setValueSerializer(new JdkSerializationRedisSerializer());
redisTemplate.opsForValue().set("user", user);
}
@Test
public void testGetPojo(){
redisTemplate.setKeySerializer(new StringRedisSerializer());
redisTemplate.setValueSerializer(new JdkSerializationRedisSerializer());
User user = (User) redisTemplate.opsForValue().get("user");
System.out.println(user);
}
/**
* GenericJackson2JsonRedisSerializer:pojo<------>json,大小74,不乱码
*/
@Test
public void testSetPojo2(){
User user = new User();
user.setId(1);
user.setName("张三丰");
user.setAge(140);
redisTemplate.setKeySerializer(new StringRedisSerializer());
redisTemplate.setValueSerializer(new GenericJackson2JsonRedisSerializer());
redisTemplate.opsForValue().set("user2", user);
}
@Test
public void testGetPojo2(){
redisTemplate.setKeySerializer(new StringRedisSerializer());
redisTemplate.setValueSerializer(new GenericJackson2JsonRedisSerializer());
User user2 = (User) redisTemplate.opsForValue().get("user2");
System.out.println(user2);
}
/**
* GenericJackson2JsonRedisSerializer处理String
*/
@Test
public void testSetStr2(){
redisTemplate.setKeySerializer(new StringRedisSerializer());
redisTemplate.setValueSerializer(new GenericJackson2JsonRedisSerializer());
redisTemplate.opsForValue().set("str2", "张三丰");
}
@Test
public void testGetStr2(){
redisTemplate.setKeySerializer(new StringRedisSerializer());
redisTemplate.setValueSerializer(new GenericJackson2JsonRedisSerializer());
String str2 = (String) redisTemplate.opsForValue().get("str2");
System.out.println(str2);
}
/**
* 使用通用的序列化器
*/
@Test
public void testSetPojo3(){
User user = new User();
user.setId(1);
user.setName("张三丰");
user.setAge(140);
redisTemplate.opsForValue().set("user3", user);
}
@Test
public void testGetPojo3(){
User user3 = (User) redisTemplate.opsForValue().get("user3");
System.out.println(user3);
}
}
问题:
每次存取pojo数据都要重新设置value的序列化器
1.3.8.设置通用序列化器
package com.powershop.config;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.GenericJackson2JsonRedisSerializer;
import org.springframework.data.redis.serializer.StringRedisSerializer;
@Configuration
public class RedisConfig {
@Bean
public RedisTemplate redisTemplate(RedisConnectionFactory factory){
RedisTemplate redisTemplate = new RedisTemplate();
redisTemplate.setConnectionFactory(factory);
//设置通用序列化器
redisTemplate.setKeySerializer(new StringRedisSerializer());
redisTemplate.setValueSerializer(new GenericJackson2JsonRedisSerializer());
redisTemplate.setHashKeySerializer(new StringRedisSerializer());
redisTemplate.setHashValueSerializer(new GenericJackson2JsonRedisSerializer());
return redisTemplate;
}
}
2.缓存首页内容
2.1.需求分析
redis缓存首页菜单和大广告位信息。
2.2.创建common_redis
2.2.1.创建工程
3.2.2.pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<parent>
<artifactId>power_shop_parent</artifactId>
<groupId>com.bjpowernode</groupId>
<version>1.0-SNAPSHOT</version>
</parent>
<modelVersion>4.0.0</modelVersion>
<artifactId>common_redis</artifactId>
<dependencies>
<!--Spring Boot Data Redis Starter-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
</dependencies>
</project>
2.2.2.config
package com.powershop.config;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.GenericJackson2JsonRedisSerializer;
import org.springframework.data.redis.serializer.StringRedisSerializer;
@Configuration
public class RedisConfig {
@Bean
public RedisTemplate redisTemplate(RedisConnectionFactory factory){
RedisTemplate redisTemplate = new RedisTemplate();
redisTemplate.setConnectionFactory(factory);
//设置通用序列化器
redisTemplate.setKeySerializer(new StringRedisSerializer());
redisTemplate.setValueSerializer(new GenericJackson2JsonRedisSerializer());
redisTemplate.setHashKeySerializer(new StringRedisSerializer());
redisTemplate.setHashValueSerializer(new GenericJackson2JsonRedisSerializer());
return redisTemplate;
}
}
2.2.3.RedisClient
package com.powershop.redis;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Component;
import org.springframework.util.CollectionUtils;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.TimeUnit;
/**
* redisTemplate封装
*/
@Component
public class RedisClient {
@Autowired
private RedisTemplate<String, Object> redisTemplate;
/**
* 指定缓存失效时间
* @param key 键
* @param time 时间(秒)
* @return
*/
public boolean expire(String key,long time){
try {
if(time>0){
redisTemplate.expire(key, time, TimeUnit.SECONDS);
}
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 根据key 获取过期时间
* @param key 键 不能为null
* @return 时间(秒) 返回0代表为永久有效
*/
public long ttl(String key){
return redisTemplate.getExpire(key,TimeUnit.SECONDS);
}
/**
* 判断key是否存在
* @param key 键
* @return true 存在 false不存在
*/
public Boolean exists(String key){
return redisTemplate.hasKey(key);
}
//============================String=============================
/**
* 普通缓存获取
* @param key 键
* @return 值
*/
public Object get(String key){
return key==null?null:redisTemplate.opsForValue().get(key);
}
/**
* 普通缓存放入
* @param key 键
* @param value 值
* @return true成功 false失败
*/
public boolean set(String key,Object value) {
try {
redisTemplate.opsForValue().set(key, value);
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 删除缓存
* @param key 可以传一个值 或多个
*/
public Boolean del(String key){
return redisTemplate.delete(key);
}
/**
* 递增
* @param key 键
* @param delta 要增加几(大于0)
* @return
*/
public long incr(String key, long delta){
if(delta<0){
throw new RuntimeException("递增因子必须大于0");
}
return redisTemplate.opsForValue().increment(key, delta);
}
/**
* 递减
* @param key 键
* @param delta 要减少几(小于0)
* @return
*/
public long decr(String key, long delta){
if(delta<0){
throw new RuntimeException("递减因子必须大于0");
}
return redisTemplate.opsForValue().decrement(key, -delta);
}
//================================hash=================================
/**
* HashGet
* @param key 键 不能为null
* @param item 项 不能为null
* @return 值
*/
public Object hget(String key,String item){
return redisTemplate.opsForHash().get(key, item);
}
/**
* 向一张hash表中放入数据,如果不存在将创建
* @param key 键
* @param item 项
* @param value 值
* @return true 成功 false失败
*/
public boolean hset(String key,String item,Object value) {
try {
redisTemplate.opsForHash().put(key, item, value);
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 删除hash表中的值
* @param key 键 不能为null
* @param item 项 可以使多个 不能为null
*/
public void hdel(String key, Object... item){
redisTemplate.opsForHash().delete(key,item);
}
//============================set=============================
/**
* 根据key获取Set中的所有值
* @param key 键
* @return
*/
public Set<Object> smembers(String key){
try {
return redisTemplate.opsForSet().members(key);
} catch (Exception e) {
e.printStackTrace();
return null;
}
}
/**
* 将数据放入set缓存
* @param key 键
* @param values 值 可以是多个
* @return 成功个数
*/
public long sadd(String key, Object...values) {
try {
return redisTemplate.opsForSet().add(key, values);
} catch (Exception e) {
e.printStackTrace();
return 0;
}
}
/**
* 移除值为value的
* @param key 键
* @param values 值 可以是多个
* @return 移除的个数
*/
public long srem(String key, Object ...values) {
try {
Long count = redisTemplate.opsForSet().remove(key, values);
return count;
} catch (Exception e) {
e.printStackTrace();
return 0;
}
}
//===============================list=================================
/**
* 获取list缓存的内容
* @param key 键
* @param start 开始
* @param end 结束 0 到 -1代表所有值
* @return
*/
public List<Object> lrange(String key, long start, long end){
try {
return redisTemplate.opsForList().range(key, start, end);
} catch (Exception e) {
e.printStackTrace();
return null;
}
}
/**
* 将list放入缓存
* @param key 键
* @param value 值
* @return
*/
public boolean rpush(String key, Object value) {
try {
redisTemplate.opsForList().rightPush(key, value);
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 将list放入缓存
* @param key 键
* @param value 值
* @return
*/
public boolean lpush(String key, List<Object> value) {
try {
redisTemplate.opsForList().rightPushAll(key, value);
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 移除N个值为value
* @param key 键
* @param count 移除多少个
* @param value 值
* @return 移除的个数
*/
public long lrem(String key,long count,Object value) {
try {
Long remove = redisTemplate.opsForList().remove(key, count, value);
return remove;
} catch (Exception e) {
e.printStackTrace();
return 0;
}
}
}
2.3.缓存商品分类菜单
2.3.1.需求分析
查询商品分类时添加缓存:
1、查询数据库之前先查询缓存。
2、查询到结果,直接响应结果。
3、查询不到,缓存中没有需要查询数据库。
4、把查询结果添加到缓存中。
5、返回结果。
向redis中添加缓存:
Key:PROTAL_CATRESULT_KEY
Value:商品分类菜单
注意:添加缓存不能影响正常业务逻辑。
2.3.2.power_shop_item
2.3.2.1.application.yml
spring:
redis:
cluster:
nodes:
- 192.168.204.131:7001
- 192.168.204.131:7002
- 192.168.204.131:7003
- 192.168.204.131:7004
- 192.168.204.131:7005
- 192.168.204.131:7006
jedis:
pool:
max-active: 20 #连接池最大连接数
max-idle: 10 #连接池中的最大空闲连接
min-idle: 5 # 连接池中的最小空闲连接
#配置缓存首页商品分类的 key
PROTAL_CATRESULT_KEY: PROTAL_CATRESULT_KEY
2.3.2.2.service
- 修改ItemCategoryServiceImpl
@Service
public class ItemCategoryServiceImpl implements ItemCategoryService {
@Autowired
private TbItemCatMapper tbItemCatMapper;
@Value("${portal_catresult_redis_key}")
private String portal_catresult_redis_key;
@Autowired
private RedisClient redisClient;
... ... ... ... ... ...
/**
* 查询首页商品分类
* @return
*/
@Override
public CatResult selectItemCategoryAll() {
//查询缓存
CatResult catResultRedis =
(CatResult)redisClient.get(PROTAL_CATRESULT_KEY);
if(catResultRedis!=null){
return catResultRedis;
}
CatResult catResult = new CatResult();
//查询商品分类
catResult.setData(getCatList(0L));
//添加到缓存
redisClient.set(portal_catresult_redis_key,catResult);
return catResult;
}
3.3.3.测试
测试结果:
第一次查询控制台输出sql语句并把查询结果保存到redis,第二次查询则不再输出
2.4.缓存首页大广告位信息
2.4.1.需求分析
查询首页大广告时添加缓存:
1、查询数据库之前先查询缓存。
2、查询到结果,直接响应结果。
3、查询不到,缓存中没有需要查询数据库。
4、把查询结果添加到缓存中。
5、返回结果。
向redis中添加缓存:
使用hash对key进行归类。
HASH :key
|–key:value
|–key:value
|–key:value
|–key:value
注意:添加缓存不能影响正常业务逻辑。
2.4.2.power_shop_content
2.4.2.1.application.yml
spring:
redis:
cluster:
nodes:
- 192.168.204.131:7001
- 192.168.204.131:7002
- 192.168.204.131:7003
- 192.168.204.131:7004
- 192.168.204.131:7005
- 192.168.204.131:7006
jedis:
pool:
max-active: 20 #连接池最大连接数
max-idle: 10 #连接池中的最大空闲连接
min-idle: 5 # 连接池中的最小空闲连接
#配置缓存首页大广告位的 key
PORTAL_AD_KEY: PORTAL_AD_KEY
3.4.2.2.service
- 修改ContentServiceImpl
@Value("${PORTAL_AD_KEY}")
private String PORTAL_AD_KEY;
@Autowired
private RedisClient redisClient;
... ... ... ... ... ...
/**
* 查询首页大广告位
* @return
*/
@Override
public List<AdNode> selectFrontendContentByAD() {
//查询缓存
List<AdNode> adNodeListRedis =
(List<AdNode>)redisClient.hget(portal_ad_redis_key,AD_CATEGORY_ID.toString());
if(adNodeListRedis!=null){
return adNodeListRedis;
}
// 查询数据库
TbContentExample tbContentExample = new TbContentExample();
TbContentExample.Criteria criteria = tbContentExample.createCriteria();
criteria.andCategoryIdEqualTo(AD_CATEGORY_ID);
List<TbContent> tbContentList =
tbContentMapper.selectByExample(tbContentExample);
List<AdNode> adNodeList = new ArrayList<AdNode>();
for (TbContent tbContent : tbContentList) {
AdNode adNode = new AdNode();
adNode.setSrc(tbContent.getPic());
adNode.setSrcB(tbContent.getPic2());
adNode.setHref(tbContent.getUrl());
adNode.setHeight(AD_HEIGHT);
adNode.setWidth(AD_WIDTH);
adNode.setHeightB(AD_HEIGHTB);
adNode.setWidthB(AD_WIDTHB);
adNodeList.add(adNode);
}
//添加到缓存
redisClient.hset(PORTAL_AD_KEY,AD_CATEGORY_ID.toString(),adNodeList);
return adNodeList;
}
2.4.3.测试
- 测试结果:第一次查询控制台输出sql语句并把查询结果保存到redis,第二次查询则不再输出
2.6.缓存同步
对首页大广告做增删改操作后只需要把对应缓存删除即可。
2.6.1.power_shop_content
2.6.1.1.service
- 修改ContentServiceImpl
/**
* 根据分类添加内容
* @param tbContent
* @return
*/
@Override
public void insertTbContent(TbContent tbContent) {
tbContent.setUpdated(new Date());
tbContent.setCreated(new Date());
this.tbContentMapper.insertSelective(tbContent);
//缓存同步
redisClient.hdel(portal_ad_redis_key,AD_CATEGORY_ID.toString());
}
/**
* 删除分类内容
* @param id
* @return
*/
@Override
public void deleteContentByIds(Long id) {
this.tbContentMapper.deleteByPrimaryKey(id);
//缓存同步
redisClient.hdel(portal_ad_redis_key,AD_CATEGORY_ID.toString());
}