【数据结构】树和森林(树和森林的存储结构、树森林二叉树的转换、树和森林的遍历

本文详细介绍了树的存储结构(双亲表示法和孩子表示法),以及树、森林与二叉树之间的转换技巧,包括树转二叉树、森林转二叉树、二叉树转树和转森林的方法。此外,还涵盖了树和森林的先序遍历、后序遍历和层次遍历的算法示例。
摘要由CSDN通过智能技术生成

5.树和森林

5.1 树的存储结构

  • 树的逻辑结构

    树是n个结点的有限集合。n=0时称为空树。

    在任意一棵非空树中应满足:

    1)有且只有一个特定的根结点;

    2)当n>1,其余结点可分为m个互不相交的有限集合,每个集合本身又是一棵树,称为根结点的子树。

  • 双亲表示法——顺序存储

    • 思路:用数组顺序存储各个结点。每个结点中保存数据元素、指向双亲结点的指针

    • 如:

      在这里插入图片描述

    • 存储结构

      #define MAX_TREE_SIZE 100 //树中最多结点数
      // 树的结点定义
      typedef struct{
          ElemType data; //数据元素
          int parent; //双亲位置域
      }PTNode;
      //树的类型定义
      typedef struct{
          PTNode nodes[MAX_TREE_SIZE]; //双亲表示
          int n; //结点数
      }PTree;
      
    • 双亲表示法的优缺点

      优点:找双亲方便;

      缺点:找孩子不方便,只能从头遍历整个数组。

      ∴适用于找父亲多,找孩子少的场景,如:并查集

  • 孩子表示法——树的顺序存储+链式存储结合

    • 思路:用数组顺序存储各个结点。每个结点中保存数据元素、孩子链表头指针。

    • 如:

      在这里插入图片描述

    • 存储结构

      struct CTNode{
          int child; //孩子结点在数组中的位置
          struct CTNode *next; //下一个孩子
      };
      typedef struct{
          ElemType data;
          struct CTNode *firstChild; //第一个孩子
      }CTBox;
      typedef struct{
          CTBox nodes[MAX_TREE_SIZE];
          int n,r; //结点数和根的位置
      }CTree;
      
      
    • 孩子表示法的优缺点

      优点:找孩子方便

      缺点:找双亲不方便,只能遍历每个链表

      ∴适用于找孩子多,找父亲少的场景,如:服务流程树

  • 孩子兄弟表示法

    typedef struct CSNode{
     ElemType data; //数据域
     struct CSNode *firstchild,*nextsibling; //第一个孩子和右兄弟指针
    }CSNode,*CSTree;
    
    • 用于存储森林时,将森林中的每棵树的根节点视为平级的兄弟关系。
    • 从存储视角看形态上和二叉树类似。

5.2 树、森林、二叉树的转换

5.2.1 树转二叉树
  • 转换技巧

    1.先在二叉树中,画一个根节点;

    2.按“树的层序”依次处理每个节点。

    基于孩子兄弟表示法:如果当前处理的结点在树中有孩子,就把所有孩子结点“用右指针串成糖葫芦”,并在二叉树中把第一个孩子挂在当前结点的左指针下方。

5.2.2 森林转二叉树
  • 转换技巧

    1.先把所有树的根结点画出来,在二叉树中用右指针串成糖葫芦;

    2.按森林的层序依次处理每个结点。

5.2.3 二叉树转树
  • 转换技巧

    1.先画出树的根结点;

    2.从树的根结点开始,按树的层序恢复每个结点的孩子。

    • 如何恢复一个结点的孩子:在二叉树中,如果当前处理的结点有左孩子,就把左孩子和“一整串右指针糖葫芦”拆下来,按顺序挂在当前结点下方。

5.2.4 二叉树转森林
  • 转换技巧

    1.先把二叉树的根节点和“一整串右指针糖葫芦”拆下来,作为多棵树的根节点;

    2.按森林的层序恢复每个结点的孩子。

    • 如何恢复一个结点的孩子:在二叉树中,如果当前处理的孩子有左孩子,就把左孩子和“一整串右指针糖葫芦”拆下来,按顺序挂在当前结点下方。

5.3 树和森林的遍历

5.3.1 树的先根遍历
  • 方法

    若树非空,先访问根结点,再依次对每棵子树进行先根遍历。

    void PreOrder(TreeNode *R){
     if(R!=NULL){
         visit(R); //访问根节点
         while(R还有下一个子树T)
             PreOrder(T); //先根遍历下一棵子树
     }
    }
    
  • 例子

在这里插入图片描述

5.3.2 树的后根遍历
  • 方法

    若树非空,先依次对每棵子树进行后根遍历,最后再访问根结点。

    void PostOrder(TreeNode *R){
     if(R!=NULL){
         while(R还有下一个子树T)
             PostOrder(T); //后根遍历下一棵子树
         visit(R);
     }
    }
    
  • 例子
    在这里插入图片描述

5.3.3 树的层次遍历
  • 方法(用队列实现)

    1.若树非空,则根节点入队;

    2.若队列非空,队头元素出队并访问,同时将该元素的孩子依次入队;

    3.重复第2步直到队列为空。

  • 例子

在这里插入图片描述

5.3.4 森林的先序遍历
  • 方法

    若森林为非空,则按如下规则进行遍历:

    1.访问森林中第一棵树的根结点;

    2.先序遍历第一棵树中根结点的子树森林;

    3.先序遍历除去第一棵树后剩余的树构成的森林。

5.3.5 森林的中序遍历
  • 方法

    若森林为非空,则按如下规则进行遍历:

    1.中序遍历森林中第一棵树的根结点的子树森林;

    2.访问第一棵树的根结点;

    3.中序遍历除去第一棵树之后剩余的树构成的森林。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值