一开始是直接暴力写了求最大公约数和最小公倍数的函数,然后只通过了4个测试点,问了一个好基友,他写了一个,通过了8个测试点,真真让我学到了
注意!!!下面的代码只通过了8个测试点!!!!!!!!!各位大佬有通过的代码,可以给孩子放在评论上,孩子需要帮助!!!!!!!!
题目描述
输入两个正整数 x_0, y_0x0,y0,求出满足下列条件的 P, QP,Q 的个数:
-
P,QP,Q 是正整数。
-
要求 P, QP,Q 以 x_0x0 为最大公约数,以 y_0y0 为最小公倍数。
试求:满足条件的所有可能的 P, QP,Q 的个数。
输入格式
一行两个正整数 x_0, y_0x0,y0。
输出格式
一行一个数,表示求出满足条件的 P, QP,Q 的个数。
输入输出样例
输入 #1复制
3 60
输出 #1复制
4
说明/提示
P,QP,Q 有 44 种:
- 3, 603,60。
- 15, 1215,12。
- 12, 1512,15。
- 60, 360,3。
对于 100\%100% 的数据,2 \le x_0, y_0 \le {10}^52≤x0,y0≤105。
【题目来源】
NOIP 2001 普及组第二题
#include <stdio.h>
int is(int p,int q,int gy,int gb)
{
int max=p>q?p:q;//g是等于p,q里面最大的那个数 ,三目运算符,不了解的可以c一下,非常简
int min=p<q?p:q;//h等于p,q里面最小的那个数
int k,i,c=p%q;
while(c)
{
p=q;
q=c;
c=p%q;
}//这个地方的while循环是一个辗转相除法,可以求最大公约数,很方便,需要的可以查查资料
for(i=1;;i++)
{
k=i*max;
if(k%min==0) break;
}
if(q==gy&&k==gb) return 1;
else return 0;
}
int main()
{
int x,y,sum=0,i,j;
scanf("%d %d",&x,&y);
for(i=1;i*x<=y;i++)//最大的公约数乘以常数,小于最小公倍数的时候
{
for(j=1;j*x<=y;j++)
{
if(is(i*x,j*x,x,y))
{
sum++;
}
}
}
printf("%d",sum);
return 0;
}