自适应控制课程心得体会

一、一些课程记录

10.9 对欧拉法求积分加以了解

对提取出的微分方程进行基础的Simulink仿真搭建:自适应控制
在这里插入图片描述

10.16 closed-loop system 闭环系统
控制系统,被控系统,测量单元
自适应机构(连续系统:微分方程;离散系统:差分方程)——调控制器参数
输入到输出之间有一个参考模型
模式切换——开关控制——多个参考模型
机器搜索——寻优
高通滤波器,积分 (class2课程)
推荐经典书目: 钱学森《工程控制论》
优秀人物:M.Krstic

以下是课程中实践的一些搭建案例
案例一:多模态自适应控制
案例一
案例二:
在这里插入图片描述
其中的函数
在这里插入图片描述
案例三:极值搜索
在这里插入图片描述
其中的函数
在这里插入图片描述

10.23
数值优化的好书——Numerical Optimization
梯度的反方向最快(实际中找到的梯度方向只能是近似值)
步长:
1.充分下降条件(防止步长过大)
2.曲率条件(防止步长过小)

一篇国外的基于数值优化的寻源论文(作参考)

以下是基于此篇文章中的流程编写的simulink仿真及matlab代码:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

clc
clear

% 输入初始值
  x=input('enter the initial column vector x ');

% 设定步长参数值
  c1 = 0.5;
  beta = 0.5;
  obj = func(x);
  g = grad(x);
  k = 0;                                  % k = # iterations
  nf=1;					   
  funcval = obj;
  
% 主代码
  while  norm(g) > 1e-5       %  停止搜索条件,梯度小于1e-6 
    p = -g;                   %  搜寻方向
    a = 1;                    %  搜寻步长
    newobj = func(x + a*p);   %  函数下一步的值
    nf = nf+1;
    while (newobj-obj)/a > c1*g'*p   %充分下降条件
      a = a*beta;
      newobj = func(x + a*p);
      nf = nf+1;
    end
    if (mod(k,100)==1)         %  输出迭代过程
        fprintf('%5.0f %5.0f %12.5e \n',k,nf,obj); 
    end
    
    funcval = [funcval,newobj];
    x = x + a*p;               % 线索搜方法
    obj = newobj;
    g = grad(x);
    k = k + 1;                 %循环迭代
  end

% 输出 x and k
  x, k

% 函数的收敛图
   plot(funcval)
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%file name:  func.m
%Rosenbrock 函数定义

function y = func(x)
y = 100*(x(1)^2 - x(2))^2 + (x(1)-1)^2;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%file name:  grad.m
%求解Rosenbrock的梯度

function y = grad(x)
y(1) = 100*(2*(x(1)^2-x(2))*2*x(1)) + 2*(x(1)-1);
y(2) = 100*(-2*(x(1)^2-x(2)));
y = y';
end

10.31进行虚拟机安装及ROS了解

ubuntu18.04及ROS-melodic安装可参考以下链接:
树莓派+ubuntu18.04+ROS-melodic+MAVROS+librealsense+vio+realsense_ros

二、总结

1.自适应控制(Adaptive Control)
2.多模式自适应控制
3.多模态自适应控制(虚拟的跑很多种)(切分空间范围)用监督器进行监督切换
4.极值搜索(extremum-seeking) 区别在于加了目标函数
被控对象-objective function-高通滤波器(+正弦扰动)-积分(+正弦扰动)
5.基于数值优化的控制
被控对象-J-数值优化-状态转换

三、自适应控制参考书籍

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

潜艇耶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值