目录
一 简介
在C语言中解决小球自由下落并弹跳的问题,可以通过循环和递归等方法来计算小球每次落地时的总路程以及第10次反弹的高度。问题描述如下:
一个球从100米高度自由落下,每次落地后反跳回原来高度的一半,再落下。要求计算小球在第10次落地时经过的总距离以及第10次反弹的高度。
二 代码实现
#include <stdio.h>
int main() {
// 初始化变量
float initialHeight = 100.0; // 初始高度
int totalJumps = 10; // 总共跳跃次数(包括第一次下落)
float currentHeight, distanceTraveled = 0;
// 循环处理每一次下落与反弹过程
for (int i = 1; i <= totalJumps; ++i) {
if (i == 1) {
// 第一次下落,只算下落距离
distanceTraveled += initialHeight;
currentHeight = initialHeight;
} else {
// 之后的下落与反弹都要计算
currentHeight /= 2; // 反弹高度为上一次高度的一半
distanceTraveled += 2 * currentHeight; // 下落加反弹的距离是当前高度的两倍
}
}
// 输出结果
printf("第十次落地时,小球总共经过了 %.2f 米。\n", distanceTraveled);
printf("第十次反弹的高度为 %.2f 米。\n", currentHeight);
return 0;
}
该程序首先初始化小球的初始高度和总的下落次数,并通过循环结构模拟小球每次下落和反弹的过程。每次下落后,小球的高度减半,然后加上这个新高度就构成了这次下落与反弹的总距离。最后,循环结束后得到的就是小球第10次落地时总共经过的总距离,而最后一次反弹的高度就是当前的小球高度currentHeight
。
请注意,上述代码假设了下落和反弹过程中的速度、空气阻力等因素可以忽略不计,仅考虑了简单的几何学规律。实际物理问题可能需要更复杂的模型来准确模拟。
三 时空复杂度
在上述C语言程序中,解决小球下落问题的算法是通过一个简单的for循环实现的。这个算法的时间复杂度和空间复杂度分析如下:
时间复杂度(Time Complexity):
该算法有一个固定的循环次数,即小球下落并反弹的总次数totalJumps
,在本例中为10次。由于每次循环内的操作都是常数时间复杂度,包括除法、乘法以及累加等基本运算,所以整个算法的时间复杂度是O(1),表示无论初始高度如何变化,执行时间是固定不变的。
空间复杂度(Space Complexity):
在上述代码示例中,使用的空间主要包括两个浮点数变量:initialHeight
用于存储初始高度,currentHeight
用于存储当前高度,并且还有一个整数变量i
作为循环计数器。除此之外没有其他与输入大小相关的数据结构,因此空间复杂度也是O(1)。
综上所述,对于这个问题而言,无论是时间复杂度还是空间复杂度都为O(1),意味着该算法在资源消耗方面非常高效,不受输入规模的影响。