代码随想录算法训练营第十八天 | 530.二叉搜索树的最小绝对差 , 501.二叉搜索树中的众数, 236. 二叉树的最近公共祖先

目录

530.二叉搜索树的最小绝对差 

思路

方法一: 递归利用中序特性,转换为数组

方法二:递归法,直接在递归中进行判断,记录前后指针

方法三:迭代法

心得收获 

501.二叉搜索树中的众数

思路

如果不是二叉搜索树

是二叉搜索树

方法一:递归法 利用字典

方法二:递归法 利用二叉搜索树性质

方法三:迭代法

 心得收获

236. 二叉树的最近公共祖先

思路

方法一:递归法

方法二:递归法-精简

心得收获


530.二叉搜索树的最小绝对差 

思路

题目中要求在二叉搜索树上任意两节点的差的绝对值的最小值。

注意是二叉搜索树,二叉搜索树可是有序的。

遇到在二叉搜索树上求什么最值啊,差值之类的,就把它想成在一个有序数组上求最值,求差值,这样就简单多了。

这道题目其实在700.二叉搜索树中的搜索基础上更改一下就可以了

方法一: 递归利用中序特性,转换为数组

class Solution:
    def __init__(self) -> None:
        self.vec = []
    def getMinimumDifference(self, root: Optional[TreeNode]) -> int:
    # 方法一:递归利用中序特性,转换为数组
        if not root: return 0


        self.traversal(root)

        if len(self.vec) < 2:
            return 0
        result = float('inf')
        for i in range(1,len(self.vec)):
            result = min(result,self.vec[i]-self.vec[i-1])

        return result

    def traversal(self,node:TreeNode) -> None:
        if node is None:
            return None
        self.traversal(node.left)
        self.vec.append(node.val)
        self.traversal(node.right)

方法二:递归法,直接在递归中进行判断,记录前后指针

class Solution:
    def __init__(self) -> None:
        # self.vec = []

        self.result = float('inf')
        self.pre = None
    def getMinimumDifference(self, root: Optional[TreeNode]) -> int:
        # 方法二:递归法,直接在递归中进行判断,记录前后指针
        if not root:return 0
        self.traversal(root)
        return self.result
    
    def traversal(self,cur:TreeNode) -> int:
        if cur is None: return 

        self.traversal(cur.left)

        if self.pre is not None :
            self.result = min(self.result,cur.val-self.pre.val)

        self.pre = cur
        self.traversal(cur.right)

方法三:迭代法

class Solution:
    def getMinimumDifference(self, root: Optional[TreeNode]) -> int:
        # 方法三:迭代法
        stack = []
        cur = root
        pre = None
        result = float('inf')
        while self.pre is not None or stack:
            if cur is not None:
                stack.append(cur)
                cur = cur.left
            else:
                cur = stack.pop()
                if pre is not None:
                    result = min(result,cur.val-pre.val)
                pre = cur 
                cur = cur.right

        return result

心得收获 

501.二叉搜索树中的众数

思路

如果不是二叉搜索树

如果不是二叉搜索树,最直观的方法一定是把这个树都遍历了,用map统计频率,把频率排个序,最后取前面高频的元素的集合。

是二叉搜索树

既然是搜索树,它中序遍历就是有序的

遍历有序数组的元素出现频率,从头遍历,那么一定是相邻两个元素作比较,然后就把出现频率最高的元素输出就可以了。

关键是在有序数组上的话,好搞,在树上怎么搞呢?

这就考察对树的操作了。

二叉树:搜索树的最小绝对差中我们就使用了pre指针和cur指针的技巧,这次又用上了。

弄一个指针指向前一个节点,这样每次cur(当前节点)才能和pre(前一个节点)作比较。

而且初始化的时候pre = NULL,这样当pre为NULL时候,我们就知道这是比较的第一个元素。

此时又有问题了,因为要求最大频率的元素集合(注意是集合,不是一个元素,可以有多个众数),如果是数组上大家一般怎么办?

应该是先遍历一遍数组,找出最大频率(maxCount),然后再重新遍历一遍数组把出现频率为maxCount的元素放进集合。(因为众数有多个)

这种方式遍历了两遍数组。

那么我们遍历两遍二叉搜索树,把众数集合算出来也是可以的。

但这里其实只需要遍历一次就可以找到所有的众数。

那么如何只遍历一遍呢?

如果 频率count 等于 maxCount(最大频率),当然要把这个元素加入到结果集中。

是不是感觉这里有问题,result怎么能轻易就把元素放进去了呢,万一,这个maxCount此时还不是真正最大频率呢。

所以下面要做如下操作:

频率count 大于 maxCount的时候,不仅要更新maxCount,而且要清空结果集(以下代码为result数组),因为结果集之前的元素都失效了。

迭代法:

只要把中序遍历转成迭代,中间节点的处理逻辑完全一样。

方法一:递归法 利用字典

from collections import defaultdict

class Solution:
    def searchBST(self, cur, freq_map):
        if cur is None:
            return
        freq_map[cur.val] += 1  # 统计元素频率
        self.searchBST(cur.left, freq_map)
        self.searchBST(cur.right, freq_map)

    def findMode(self, root):
        freq_map = defaultdict(int)  # key:元素,value:出现频率
        result = []
        if root is None:
            return result
        self.searchBST(root, freq_map)
        max_freq = max(freq_map.values())
        for key, freq in freq_map.items():
            if freq == max_freq:
                result.append(key)
        return result

方法二:递归法 利用二叉搜索树性质

class Solution:
    def __init__(self):
        self.maxCount = 0  # 最大频率
        self.count = 0  # 统计频率
        self.pre = None
        self.result = []

    def searchBST(self, cur):
        if cur is None:
            return

        self.searchBST(cur.left)  # 左
        # 中
        if self.pre is None:  # 第一个节点
            self.count = 1
        elif self.pre.val == cur.val:  # 与前一个节点数值相同
            self.count += 1
        else:  # 与前一个节点数值不同
            self.count = 1
        self.pre = cur  # 更新上一个节点

        if self.count == self.maxCount:  # 如果与最大值频率相同,放进result中
            self.result.append(cur.val)

        if self.count > self.maxCount:  # 如果计数大于最大值频率
            self.maxCount = self.count  # 更新最大频率
            self.result = [cur.val]  # 很关键的一步,不要忘记清空result,之前result里的元素都失效了

        self.searchBST(cur.right)  # 右
        return

    def findMode(self, root):
        self.count = 0
        self.maxCount = 0
        self.pre = None  # 记录前一个节点
        self.result = []

        self.searchBST(root)
        return self.result

方法三:迭代法

class Solution:
    def findMode(self, root):
        st = []
        cur = root
        pre = None
        maxCount = 0  # 最大频率
        count = 0  # 统计频率
        result = []

        while cur is not None or st:
            if cur is not None:  # 指针来访问节点,访问到最底层
                st.append(cur)  # 将访问的节点放进栈
                cur = cur.left  # 左
            else:
                cur = st.pop()
                if pre is None:  # 第一个节点
                    count = 1
                elif pre.val == cur.val:  # 与前一个节点数值相同
                    count += 1
                else:  # 与前一个节点数值不同
                    count = 1

                if count == maxCount:  # 如果和最大值相同,放进result中
                    result.append(cur.val)

                if count > maxCount:  # 如果计数大于最大值频率
                    maxCount = count  # 更新最大频率
                    result = [cur.val]  # 很关键的一步,不要忘记清空result,之前result里的元素都失效了

                pre = cur
                cur = cur.right  # 右

        return result

 心得收获

236. 二叉树的最近公共祖先

思路

遇到这个题目首先想的是要是能自底向上查找就好了,这样就可以找到公共祖先了。

那么二叉树如何可以自底向上查找呢?

回溯啊,二叉树回溯的过程就是从低到上。

后序遍历(左右中)就是天然的回溯过程,可以根据左右子树的返回值,来处理中节点的逻辑。

接下来就看如何判断一个节点是节点q和节点p的公共祖先呢。

首先最容易想到的一个情况:如果找到一个节点,发现左子树出现结点p,右子树出现节点q,或者 左子树出现结点q,右子树出现节点p,那么该节点就是节点p和q的最近公共祖先。 即情况一:

判断逻辑是 如果递归遍历遇到q,就将q返回,遇到p 就将p返回,那么如果 左右子树的返回值都不为空,说明此时的中节点,一定是q 和p 的最近祖先。

那么有录友可能疑惑,会不会左子树 遇到q 返回,右子树也遇到q返回,这样并没有找到 q 和p的最近祖先。

这么想的录友,要审题了,题目强调:二叉树节点数值是不重复的,而且一定存在 q 和 p

但是很多人容易忽略一个情况,就是节点本身p(q),它拥有一个子孙节点q(p)。 情况二:

其实情况一 和 情况二 代码实现过程都是一样的,也可以说,实现情况一的逻辑,顺便包含了情况二。

因为遇到 q 或者 p 就返回,这样也包含了 q 或者 p 本身就是 公共祖先的情况。

这一点是很多录友容易忽略的,在下面的代码讲解中,可以再去体会。

递归三部曲:

  • 确定递归函数返回值以及参数

需要递归函数返回值,来告诉我们是否找到节点q或者p,那么返回值为bool类型就可以了。

但我们还要返回最近公共节点,可以利用上题目中返回值是TreeNode * ,那么如果遇到p或者q,就把q或者p返回,返回值不为空,就说明找到了q或者p。

  • 确定终止条件

遇到空的话,因为树都是空了,所以返回空。

那么我们来说一说,如果 root == q,或者 root == p,说明找到 q p ,则将其返回,这个返回值,后面在中节点的处理过程中会用到,那么中节点的处理逻辑,下面讲解。

  • 确定单层递归逻辑

值得注意的是 本题函数有返回值,是因为回溯的过程需要递归函数的返回值做判断,但本题我们依然要遍历树的所有节点。

 

我们在二叉树:递归函数究竟什么时候需要返回值,什么时候不要返回值?中说了 递归函数有返回值就是要遍历某一条边,但有返回值也要看如何处理返回值!

如果递归函数有返回值,如何区分要搜索一条边,还是搜索整个树呢?

搜索一条边的写法:

if 递归函数(root.left): return 

if 递归函数(root.right): return 

搜索整个树写法:


left = 递归函数(root.left) // 左
right = 递归函数(root.right) // 右
left与right的逻辑处理        // 中 

看出区别了没?

在递归函数有返回值的情况下:如果要搜索一条边,递归函数返回值不为空的时候,立刻返回,如果搜索整个树,直接用一个变量left、right接住返回值,这个left、right后序还有逻辑处理的需要,也就是后序遍历中处理中间节点的逻辑(也是回溯)

那么为什么要遍历整棵树呢?直观上来看,找到最近公共祖先,直接一路返回就可以了。

如图:

236.二叉树的最近公共祖先

就像图中一样直接返回7。

但事实上还要遍历根节点右子树(即使此时已经找到了目标节点了),也就是图中的节点4、15、20。

因为在如下代码的后序遍历中,如果想利用left和right做逻辑处理, 不能立刻返回,而是要等left与right逻辑处理完之后才能返回。

left = 递归函数(root.left) // 左
right = 递归函数(root.right) // 右
left与right的逻辑处理        // 中 

所以此时大家要知道我们要遍历整棵树。知道这一点,对本题就有一定深度的理解了。

那么先用left和right接住左子树和右子树的返回值,代码如下:

left = lowestCommonAncestor(root.left, p, q)
right = lowestCommonAncestor(root.right, p, q)

如果left 和 right都不为空,说明此时root就是最近公共节点。这个比较好理解

如果left为空,right不为空,就返回right,说明目标节点是通过right返回的,反之依然

这里有的同学就理解不了了,为什么left为空,right不为空,目标节点通过right返回呢?

如图:

236.二叉树的最近公共祖先1

图中节点10的左子树返回null,右子树返回目标值7,那么此时节点10的处理逻辑就是把右子树的返回值(最近公共祖先7)返回上去!

这里也很重要,可能刷过这道题目的同学,都不清楚结果究竟是如何从底层一层一层传到头结点的。

那么如果left和right都为空,则返回left或者right都是可以的,也就是返回空。

代码如下:

if left == None and right != None: return right
elif left != None and right == None :return left
else :  
#  left == None and right == None
    return None


那么寻找最小公共祖先,完整流程图如下:

236.二叉树的最近公共祖先2

从图中,大家可以看到,我们是如何回溯遍历整棵二叉树,将结果返回给头结点的!

方法一:递归法

class Solution:
    def lowestCommonAncestor(self, root, p, q):
        if root == q or root == p or root is None:
            return root

        left = self.lowestCommonAncestor(root.left, p, q)
        right = self.lowestCommonAncestor(root.right, p, q)

        if left is not None and right is not None:
            return root

        if left is None and right is not None:
            return right
        elif left is not None and right is None:
            return left
        else: 
            return None

方法二:递归法-精简

class Solution:
    def lowestCommonAncestor(self, root, p, q):
        if root == q or root == p or root is None:
            return root

        left = self.lowestCommonAncestor(root.left, p, q)
        right = self.lowestCommonAncestor(root.right, p, q)

        if left is not None and right is not None:
            return root

        if left is None:
            return right
        return left

心得收获

这道题目刷过的同学未必真正了解这里面回溯的过程,以及结果是如何一层一层传上去的。

那么我给大家归纳如下三点

  1. 求最小公共祖先,需要从底向上遍历,那么二叉树,只能通过后序遍历(即:回溯)实现从底向上的遍历方式。

  2. 在回溯的过程中,必然要遍历整棵二叉树,即使已经找到结果了,依然要把其他节点遍历完,因为要使用递归函数的返回值(也就是代码中的left和right)做逻辑判断。

  3. 要理解如果返回值left为空,right不为空为什么要返回right,为什么可以用返回right传给上一层结果。

可以说这里每一步,都是有难度的,都需要对二叉树,递归和回溯有一定的理解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值