时空地理加权回归(GTWR)R代码问题

作者在使用R中的GWmodel包进行毕业论文模型时遇到错误,尽管尝试了网上的教程但无解,寻求GitHub之外的技术支持。
摘要由CSDN通过智能技术生成

求助各位大神,毕业论文的模型问题急求!

我在R里面按照网上教程写了运行代码,用的是GWmodel包,但是运行就是报错,如图,在github里面也没有找到解决办法,急需各位大佬的帮助!

 

在ArcGIS中,可以使用GTWR(Geographically and Temporally Weighted Regression,时空地理加权回归)进行时空地理加权分析。GTWR是一种空间回归分析方法,它结合了地理和时间信息,并允许回归系数随着空间和时间位置的变化而变化。 下面是使用ArcGIS进行GTWR时空地理加权的步骤: 1. 准备数据:将所需的空间和时间数据导入ArcGIS。例如,导入包含自变量和因变量的点矢量数据。 2. 创建空间邻域:使用ArcGIS中的邻域工具(如"Generate Spatial Weights Matrix")来创建空间邻域。该工具将根据指定的距离阈值创建一个空间邻域矩阵,以描述每个点与其邻近点之间的空间关系。 3. 创建时间邻域:将时间数据转换为连续的时间变量,在数据中添加一个时间字段。然后,使用时间窗口来定义时间邻域,以描述每个点与其邻近时间点之间的时间关系。 4. 设定权重函数:使用ArcGIS的"GTWR Setup"工具来设定权重函数。在该工具中,可以选择不同的权重函数(如Gaussian、Bisquare等),并设置带宽参数以控制权重函数的形状和范围。 5. 进行GTWR分析:使用ArcGIS中的"GTWR"工具来执行GTWR分析。该工具将使用所选的权重函数和带宽参数来计算每个点的加权回归系数。此步骤将生成一个空间和时间分布的回归系数图。 6. 结果分析:使用ArcGIS的图层属性表和地图显示功能,可以对GTWR结果进行进一步分析和可视化。可以显示加权回归系数的空间和时间分布图,以及其统计显著性和可信区间。 通过上述步骤,可以在ArcGIS中成功执行GTWR时空地理加权分析,从而更准确地理解空间和时间因素对回归模型的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值