1-1
分数 3
作者 DS课程组
单位 浙江大学
无向连通图所有顶点的度之和为偶数。
T
顶点的度为顶点所连接的边的个数,无向连通图中的顶点的度之和 为边数*2所以顶点的度之和为偶数
分数 3
作者 DS课程组
单位 浙江大学
无向连通图边数一定大于顶点个数减1。
F
很显然边数可以等于顶点个数 >=
分数 3
作者 DS课程组
单位 浙江大学
无向连通图至少有一个顶点的度为1。
F
在顶点数n≥3的完全有向图中,没有度为1的节点,并且边数与顶点数的差要大于等于0
分数 3
作者 DS课程组
单位 浙江大学
用邻接表法存储图,占用的存储空间数只与图中结点个数有关,而与边数无关。
F
邻接矩阵法的存储大小为n2,只与顶点数有关,与边无关
邻接表既和顶点有关也和变有关!
分数 3
作者 DS课程组
单位 浙江大学
用邻接矩阵法存储图,占用的存储空间数只与图中结点个数有关,而与边数无关。
T
分数 3
作者 DS课程组
单位 浙江大学
在一个有向图中,所有顶点的入度与出度之和等于所有边之和的2倍。
T
分数 3
作者 DS课程组
单位 浙江大学
在任一有向图中,所有顶点的入度之和等于所有顶点的出度之和。
T
分数 3
作者 陈越
单位 浙江大学
用一维数组G[]
存储有4个顶点的无向图如下:
G[] = { 0, 1, 0, 1, 1, 0, 0, 0, 1, 0 }
则顶点2和顶点0之间是有边的。
T
采用一维数组来存储,则只是存储了下半部分,这样节省了一半的空间。通过观察可以得到2和0有关系
分数 3
作者 陈越
单位 浙江大学
图是表示一对一关系的数据结构。
F
分数 3
作者 陈越
单位 浙江大学
图是表示多对多关系的数据结构。
T
2-1
分数 2
作者 DS课程组
单位 浙江大学
下列关于无向连通图特征的叙述中,正确的是:
- 所有顶点的度之和为偶数
- 边数大于顶点个数减1
- 至少有一个顶点的度为1
A.只有1
B.只有2
C.1和2
D.1和3
分数 2
作者 DS课程组
单位 浙江大学
具有5个顶点的有向完全图有多少条弧?
A.10
B.16
C.20
D.25
完全有向图 边数 = n(n-1) 完全无向图 边数 = n(n-1)/2
分数 2
作者 DS课程组
单位 浙江大学
对于有向图,其邻接矩阵表示比邻接表表示更易于:
A.求一个顶点的入度
B.求一个顶点的出边邻接点
C.进行图的深度优先遍历
D.进行图的广度优先遍历.
邻接矩阵用空间换取时间,对于查询度会比邻接表更快,因为邻接表查入度时候需要遍历所有节点
分数 2
作者 DS课程组
单位 浙江大学
对于一个具有N个顶点的无向图,若采用邻接矩阵表示,则该矩阵的大小是:
A.N−1
B.N
C.(N−1)2
D.N2
分数 2
作者 DS课程组
单位 浙江大学
若一个有向图用邻接矩阵表示,则第i个结点的入度就是:
A.第i行的元素个数
B.第i行的非零元素个数
C.第i列的非零元素个数
D.第i列的零元素个数
分数 2
作者 DS课程组
单位 浙江大学
下面关于图的存储的叙述中,哪一个是正确的?
A.用相邻矩阵法存储图,占用的存储空间数只与图中结点个数有关,而与边数无关
B.用相邻矩阵法存储图,占用的存储空间数只与图中边数有关,而与结点个数无关
C.用邻接表法存储图,占用的存储空间数只与图中结点个数有关,而与边数无关
D.用邻接表法存储图,占用的存储空间数只与图中边数有关,而与结点个数无关
分数 2
作者 DS课程组
单位 浙江大学
关于图的邻接矩阵,下列哪个结论是正确的?
A.有向图的邻接矩阵总是不对称的
B.有向图的邻接矩阵可以是对称的,也可以是不对称的
C.无向图的邻接矩阵总是不对称的
D.无向图的邻接矩阵可以是不对称的,也可以是对称的
对无向图而言,邻接矩阵一定是对称的,而且主对角线一定为零(在此仅讨论无向简单图),副对角线不一定为0,有向图则不一定如此
在无向图中,任一顶点i的度为第i列(或第i行)所有非零元素的个数,在有向图中顶点i的出度为第i行所有非零元素的个数,而入度为第i列所有非零元素的个数
用邻接矩阵法表示图共需要n^2个空间,由于无向图的邻接矩阵一定具有对称关系,所以扣除对角线为零外,仅需要存储上三角形或下三角形的数据即可,因此仅需要n(n-1)/2个空间
分数 2
作者 DS课程组
单位 浙江大学
设N个顶点E条边的图用邻接表存储,则求每个顶点入度的时间复杂度为:
A.O(N)
B.O(N2)
C.O(N+E)
D.O(N×E)
O(n+e)是对的,O(n*n)是用邻接矩阵存储时的时间复杂度。
算法就是遍历每一条边,然后把每条边的终点的入度+1.
在邻接表中,就是要依次访问每个顶点,然后在每个顶点中依次访问每条边,把这些边的终点的入度+1。也就是每个顶点和每条边依次要各访问一遍,所以时间复杂度是O(n+e)。
在邻接矩阵中,算法需要遍历邻接矩阵的每一个点,而邻接矩阵有n*n个点,所以时间复杂度是O(n*n)。
分数 2
作者 DS课程组
单位 浙江大学
在一个无向图中,所有顶点的度数之和等于所有边数的多少倍?
A.1/2
B.1
C.2
D.4
分数 2
作者 DS课程组
单位 浙江大学
在任一有向图中,所有顶点的入度之和与所有顶点的出度之和的关系是:
A.相等
B.大于等于
C.小于等于
D.不确定
分数 2
作者 DS课程组
单位 浙江大学
下列有关图的叙述中,有几句是对的?
- 如果e是有权无向图G唯一的一条最短边,那么边e一定会在该图的最小生成树上。
- 如果无向图的宽度优先搜索的结果为1234....,且顶点1与顶点4之间存在一条边相连,那么顶点1与顶点3之间也一定有边相连。
- 如果从有向图G(至少有2个顶点)的每一点均能通过深度优先搜索遍历到所有其它顶点,那么该图一定不存在拓扑序列。
- 若图采用邻接矩阵表示,如果该矩阵不全为0,且矩阵主对角线以下全是0,那么说明该图一定是有向图。
A.4句
B.3句
C.2句
D.1句
分数 2
作者 陈越
单位 浙江大学
如果G是一个有36条边的非连通无向图,那么该图顶点个数最少为多少?
A.7
B.8
C.9
D.10
9+1 1为独立的点 使其不连通
分数 2
作者 陈越
单位 浙江大学
如果G是一个有15条边的非连通无向图,那么该图顶点个数最少为多少?
A.7
B.8
C.9
D.10
7个顶点。此时若再加一条边则必然使图变成连通图,15=n(n-1)/2=6*5/2条边的完全无向图中,总共有六个顶点构成,再加上一个不连通的顶点,共7个顶点
分数 2
作者 考研试卷
单位 浙江大学
已知无向图G含有16条边,其中度为4的顶点个数为3,度为3的顶点个数为4,其他顶点的度均小于3。图G所含的顶点个数至少是:
A.10
B.11
C.13
D.15
3+4+4 16条边 32个度 32-12-12 = 8 8个度 剩下顶点度< 3 最大2 则还有4顶点
分数 2
作者 陈越
单位 浙江大学
具有 50 个顶点和 17 条边的无向图至多有多少个连通分量?
A.32
B.33
C.44
D.45
43个孤立顶点组成43个连通分量 7个顶点组成一个17条边的连通分量
分数 2
作者 魏宝刚
单位 浙江大学
设无向图为 G=(V,E),其中 V={v1,v2,v3,v4},E={(v1,v2),(v3,v4),(v4,v1),(v2,v3),(v1,v3)}。则每个顶点的度依次为:
A.2, 1, 1, 1
B.1, 1, 2, 1
C.3, 2, 3, 2
D.2, 3, 2, 3
分数 2
作者 魏宝刚
单位 浙江大学
对于给定的有向图如下,其强连通分量为:
A.{1}, {2, 3, 4, 6}, {5}
B.{1}, {2, 3, 4}, {5, 6}
C.{1}, {2, 4, 6}, {3}, {5}
D.{1, 2, 3, 4, 5, 6}
分数 2
作者 张泳
单位 浙大城市学院
一个有n个顶点的简单有向图最多有 ( ) 条边
A.n
B.n(n-1)
C.n(n-1)/2
D.2n
分数 2
作者 张泳
单位 浙大城市学院
在一个具有n个顶点的有向图中,构成强连通图时至少有 ( ) 条边
A.n
B.n+1
C.n-1
D.n/2
有n个顶点的强连通图最多有n(n-1)条边,最少有n条边。
分数 2
作者 张泳
单位 浙大城市学院
一个图的邻接矩阵中非0非∞的元素个数为奇数,则该图可能是( )
A.有向图
B.无向图
C.无向图或有向图
D.以上都不对
7-1 分而治之
分而治之,各个击破是兵家常用的策略之一。在战争中,我们希望首先攻下敌方的部分城市,使其剩余的城市变成孤立无援,然后再分头各个击破。为此参谋部提供了若干打击方案。本题就请你编写程序,判断每个方案的可行性。
输入格式:
输入在第一行给出两个正整数 N 和 M(均不超过10 000),分别为敌方城市个数(于是默认城市从 1 到 N 编号)和连接两城市的通路条数。随后 M 行,每行给出一条通路所连接的两个城市的编号,其间以一个空格分隔。在城市信息之后给出参谋部的系列方案,即一个正整数 K (≤ 100)和随后的 K 行方案,每行按以下格式给出:
Np v[1] v[2] ... v[Np]
其中 Np
是该方案中计划攻下的城市数量,后面的系列 v[i]
是计划攻下的城市编号。
输出格式:
对每一套方案,如果可行就输出YES
,否则输出NO
。
输入样例:
10 11
8 7
6 8
4 5
8 4
8 1
1 2
1 4
9 8
9 1
1 10
2 4
5
4 10 3 8 4
6 6 1 7 5 4 9
3 1 8 4
2 2 8
7 9 8 7 6 5 4 2
输出样例:
NO
YES
YES
NO
NO
#include <iostream>
#include <cstring>
using namespace std;
typedef struct
{
int x;
int y;
} City;
City c[10001];
int judge[10001];
int main()
{
int n, m;
cin >> n >> m;
for (int i = 0; i < m; i++)
cin >> c[i].x >> c[i].y;
int k, np, v;
cin >> k;
for (int i = 0; i < k; i++)
{
int flag = 1;
cin >> np;
memset(judge, 0, sizeof(judge));
for (int j = 0; j < np; j++)
{
cin >> v;
judge[v] = 1;
}
for (int j = 0; j < m; j++)
{
if (judge[c[j].x] == 0 && judge[c[j].y] == 0)
{
flag = 0;
break;
}
}
if (flag)
cout << "YES" << endl;
else
cout << "NO" << endl;
}
}