DS_Graph

本文探讨了无向连通图的顶点度之和、边数与顶点数的关系,以及有向图的弧数、入度出度平衡、图存储方法的比较。涉及邻接矩阵和邻接表的存储空间分析,并解析了几个具体问题的正确答案。同时,涉及图的表示与关系类型的讨论。
摘要由CSDN通过智能技术生成

1-1

分数 3

作者 DS课程组

单位 浙江大学

无向连通图所有顶点的度之和为偶数。

T

顶点的度为顶点所连接的边的个数,无向连通图中的顶点的度之和 为边数*2所以顶点的度之和为偶数


1-2

分数 3

作者 DS课程组

单位 浙江大学

无向连通图边数一定大于顶点个数减1。

F

很显然边数可以等于顶点个数  >=


1-3

分数 3

作者 DS课程组

单位 浙江大学

无向连通图至少有一个顶点的度为1。

F

在顶点数n≥3的完全有向图中,没有度为1的节点,并且边数与顶点数的差要大于等于0


1-4

分数 3

作者 DS课程组

单位 浙江大学

用邻接表法存储图,占用的存储空间数只与图中结点个数有关,而与边数无关。

F

邻接矩阵法的存储大小为n2,只与顶点数有关,与边无关

邻接表既和顶点有关也和变有关!


1-5

分数 3

作者 DS课程组

单位 浙江大学

用邻接矩阵法存储图,占用的存储空间数只与图中结点个数有关,而与边数无关。

T


1-6

分数 3

作者 DS课程组

单位 浙江大学

在一个有向图中,所有顶点的入度与出度之和等于所有边之和的2倍。

T


1-7

分数 3

作者 DS课程组

单位 浙江大学

在任一有向图中,所有顶点的入度之和等于所有顶点的出度之和。

T


1-8

分数 3

作者 陈越

单位 浙江大学

用一维数组G[]存储有4个顶点的无向图如下:

G[] = { 0, 1, 0, 1, 1, 0, 0, 0, 1, 0 }

则顶点2和顶点0之间是有边的。

T

采用一维数组来存储,则只是存储了下半部分,这样节省了一半的空间。通过观察可以得到2和0有关系watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA4pieQFfvv71XQOKYnA==,size_20,color_FFFFFF,t_70,g_se,x_16#pic_center


 

1-9

分数 3

作者 陈越

单位 浙江大学

图是表示一对一关系的数据结构。

F


1-10

分数 3

作者 陈越

单位 浙江大学

图是表示多对多关系的数据结构。

T


2-1

分数 2

作者 DS课程组

单位 浙江大学

下列关于无向连通图特征的叙述中,正确的是:

  1. 所有顶点的度之和为偶数
  2. 边数大于顶点个数减1
  3. 至少有一个顶点的度为1

A.只有1

B.只有2

C.1和2

D.1和3


2-2

分数 2

作者 DS课程组

单位 浙江大学

具有5个顶点的有向完全图有多少条弧?

A.10

B.16

C.20

D.25

完全有向图 边数 = n(n-1)   完全无向图 边数 = n(n-1)/2


2-3

分数 2

作者 DS课程组

单位 浙江大学

对于有向图,其邻接矩阵表示比邻接表表示更易于:

A.求一个顶点的入度

B.求一个顶点的出边邻接点

C.进行图的深度优先遍历

D.进行图的广度优先遍历.

邻接矩阵用空间换取时间,对于查询度会比邻接表更快,因为邻接表查入度时候需要遍历所有节点


2-4

分数 2

作者 DS课程组

单位 浙江大学

对于一个具有N个顶点的无向图,若采用邻接矩阵表示,则该矩阵的大小是:

A.N−1

B.N

C.(N−1)2

D.N2


2-5

分数 2

作者 DS课程组

单位 浙江大学

若一个有向图用邻接矩阵表示,则第i个结点的入度就是:

A.第i行的元素个数

B.第i行的非零元素个数

C.第i列的非零元素个数

D.第i列的零元素个数


2-6

分数 2

作者 DS课程组

单位 浙江大学

下面关于图的存储的叙述中,哪一个是正确的?

A.用相邻矩阵法存储图,占用的存储空间数只与图中结点个数有关,而与边数无关

B.用相邻矩阵法存储图,占用的存储空间数只与图中边数有关,而与结点个数无关

C.用邻接表法存储图,占用的存储空间数只与图中结点个数有关,而与边数无关

D.用邻接表法存储图,占用的存储空间数只与图中边数有关,而与结点个数无关


2-7

分数 2

作者 DS课程组

单位 浙江大学

关于图的邻接矩阵,下列哪个结论是正确的?

A.有向图的邻接矩阵总是不对称的

B.有向图的邻接矩阵可以是对称的,也可以是不对称的

C.无向图的邻接矩阵总是不对称的

D.无向图的邻接矩阵可以是不对称的,也可以是对称的

对无向图而言,邻接矩阵一定是对称的,而且主对角线一定为零(在此仅讨论无向简单图),副对角线不一定为0,有向图则不一定如此

在无向图中,任一顶点i的度为第i列(或第i行)所有非零元素的个数,在有向图中顶点i的出度为第i行所有非零元素的个数,而入度为第i列所有非零元素的个数

用邻接矩阵法表示图共需要n^2个空间,由于无向图的邻接矩阵一定具有对称关系,所以扣除对角线为零外,仅需要存储上三角形或下三角形的数据即可,因此仅需要n(n-1)/2个空间


2-8

分数 2

作者 DS课程组

单位 浙江大学

设N个顶点E条边的图用邻接表存储,则求每个顶点入度的时间复杂度为:

A.O(N)

B.O(N2)

C.O(N+E)

D.O(N×E)

O(n+e)是对的,O(n*n)是用邻接矩阵存储时的时间复杂度。
算法就是遍历每一条边,然后把每条边的终点的入度+1.
在邻接表中,就是要依次访问每个顶点,然后在每个顶点中依次访问每条边,把这些边的终点的入度+1。也就是每个顶点和每条边依次要各访问一遍,所以时间复杂度是O(n+e)。
在邻接矩阵中,算法需要遍历邻接矩阵的每一个点,而邻接矩阵有n*n个点,所以时间复杂度是O(n*n)。


2-9

分数 2

作者 DS课程组

单位 浙江大学

在一个无向图中,所有顶点的度数之和等于所有边数的多少倍?

A.1/2

B.1

C.2

D.4


2-10

分数 2

作者 DS课程组

单位 浙江大学

在任一有向图中,所有顶点的入度之和与所有顶点的出度之和的关系是:

A.相等

B.大于等于

C.小于等于

D.不确定


2-11

分数 2

作者 DS课程组

单位 浙江大学

下列有关图的叙述中,有几句是对的?

  1. 如果e是有权无向图G唯一的一条最短边,那么边e一定会在该图的最小生成树上。
  2. 如果无向图的宽度优先搜索的结果为1234....,且顶点1与顶点4之间存在一条边相连,那么顶点1与顶点3之间也一定有边相连。
  3. 如果从有向图G(至少有2个顶点)的每一点均能通过深度优先搜索遍历到所有其它顶点,那么该图一定不存在拓扑序列。
  4. 若图采用邻接矩阵表示,如果该矩阵不全为0,且矩阵主对角线以下全是0,那么说明该图一定是有向图。

A.4句

B.3句

C.2句

D.1句


2-12

分数 2

作者 陈越

单位 浙江大学

如果G是一个有36条边的非连通无向图,那么该图顶点个数最少为多少?

A.7

B.8

C.9

D.10

9+1  1为独立的点 使其不连通


2-13

分数 2

作者 陈越

单位 浙江大学

如果G是一个有15条边的非连通无向图,那么该图顶点个数最少为多少?

A.7

B.8

C.9

D.10

7个顶点。此时若再加一条边则必然使图变成连通图,15=n(n-1)/2=6*5/2条边的完全无向图中,总共有六个顶点构成,再加上一个不连通的顶点,共7个顶点


2-14

分数 2

作者 考研试卷

单位 浙江大学

已知无向图G含有16条边,其中度为4的顶点个数为3,度为3的顶点个数为4,其他顶点的度均小于3。图G所含的顶点个数至少是:

A.10

B.11

C.13

D.15

3+4+4    16条边  32个度  32-12-12 = 8   8个度  剩下顶点度< 3  最大2  则还有4顶点


2-15

分数 2

作者 陈越

单位 浙江大学

具有 50 个顶点和 17 条边的无向图至多有多少个连通分量?

A.32

B.33

C.44

D.45

43个孤立顶点组成43个连通分量  7个顶点组成一个17条边的连通分量


2-16

分数 2

作者 魏宝刚

单位 浙江大学

设无向图为 G=(V,E),其中 V={v1,v2,v3,v4},E={(v1,v2),(v3,v4),(v4,v1),(v2,v3),(v1,v3)}。则每个顶点的度依次为:

A.2, 1, 1, 1

B.1, 1, 2, 1

C.3, 2, 3, 2

D.2, 3, 2, 3


2-17

分数 2

作者 魏宝刚

单位 浙江大学

对于给定的有向图如下,其强连通分量为:

 

A.{1}, {2, 3, 4, 6}, {5}

B.{1}, {2, 3, 4}, {5, 6}

C.{1}, {2, 4, 6}, {3}, {5}

D.{1, 2, 3, 4, 5, 6}


2-18

分数 2

作者 张泳

单位 浙大城市学院

一个有n个顶点的简单有向图最多有 ( ) 条边

A.n

B.n(n-1)

C.n(n-1)/2

D.2n


2-19

分数 2

作者 张泳

单位 浙大城市学院

在一个具有n个顶点的有向图中,构成强连通图时至少有 ( ) 条边

A.n

B.n+1

C.n-1

D.n/2

有n个顶点的强连通图最多有n(n-1)条边,最少有n条边。


2-20

分数 2

作者 张泳

单位 浙大城市学院

一个图的邻接矩阵中非0非∞的元素个数为奇数,则该图可能是( )

A.有向图

B.无向图

C.无向图或有向图

D.以上都不对


7-1 分而治之

分而治之,各个击破是兵家常用的策略之一。在战争中,我们希望首先攻下敌方的部分城市,使其剩余的城市变成孤立无援,然后再分头各个击破。为此参谋部提供了若干打击方案。本题就请你编写程序,判断每个方案的可行性。

输入格式:

输入在第一行给出两个正整数 N 和 M(均不超过10 000),分别为敌方城市个数(于是默认城市从 1 到 N 编号)和连接两城市的通路条数。随后 M 行,每行给出一条通路所连接的两个城市的编号,其间以一个空格分隔。在城市信息之后给出参谋部的系列方案,即一个正整数 K (≤ 100)和随后的 K 行方案,每行按以下格式给出:

Np v[1] v[2] ... v[Np]

其中 Np 是该方案中计划攻下的城市数量,后面的系列 v[i] 是计划攻下的城市编号。

输出格式:

对每一套方案,如果可行就输出YES,否则输出NO

输入样例:

10 11
8 7
6 8
4 5
8 4
8 1
1 2
1 4
9 8
9 1
1 10
2 4
5
4 10 3 8 4
6 6 1 7 5 4 9
3 1 8 4
2 2 8
7 9 8 7 6 5 4 2

输出样例:

NO
YES
YES
NO
NO
#include <iostream>
#include <cstring>
using namespace std;

typedef struct
{
	int x;
	int y;
} City;

City c[10001];
int judge[10001];

int main()
{
	int n, m;
	cin >> n >> m;
	for (int i = 0; i < m; i++)
		cin >> c[i].x >> c[i].y;
	int k, np, v;
	cin >> k;
	for (int i = 0; i < k; i++)
	{
		int flag = 1;
		cin >> np;
		memset(judge, 0, sizeof(judge));
		for (int j = 0; j < np; j++)
		{
			cin >> v;
			judge[v] = 1;
		}
		for (int j = 0; j < m; j++)
		{
			if (judge[c[j].x] == 0 && judge[c[j].y] == 0)
			{
				flag = 0;
				break;
			}
		}
		if (flag)
			cout << "YES" << endl;
		else
			cout << "NO" << endl;
	}

}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xiaoyangiii

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值