字节跳动面试题(编程题)—平衡二叉树(思路+代码)—力扣110

该博客讨论了一种优化平衡二叉树判断的方法,通过在计算树高时同时检查平衡条件,避免了不必要的重复遍历,从而将时间复杂度降低到O(n)。文章详细介绍了如何在递归过程中实现这一优化,包括计算左右子树高度和判断平衡的逻辑,并给出了完整的Java代码实现。
摘要由CSDN通过智能技术生成

题目要求:
在这里插入图片描述
在这里插入图片描述

思路:求平衡二叉树,就要先求出树的左右子树的高度(创建一个方法),然后判断是否满足平衡二叉树条件(另一个方法),但是这种O(n)达到了n^2 因为在求高度的时候就可能已经出现了不平衡(遍历一遍),但是得在判断时候为平衡二叉树的时候才能找到不平衡(遍历两边),遍历了两次达到了n^2,在面试中时不会通过的,所以我们可以在计算高度的时候就判断是否满足条件,这样就达到了时间复杂度是n,只遍历一遍。

1.创建一个方法用来计算左右子树的高度,为平衡树的时候才会返回高度,否则返回-1.
ps:Math.abs计算绝对值 Math.max计算最大值

public int maxDepth(TreeNode root) {
       if(root == null){
           return 0;
       }
       int leftH = maxDepth(root.left);//接收返回值 为-1时不再判断是否为平衡二叉树,会一直返回-1.
       int rightH = maxDepth(root.right);
       if(leftH >=0 && rightH >=0 && Math.abs(leftH - rightH) <= 1){
           return Math.max(leftH,rightH)+1;//+1返回的是根节点的高度,可以想象根节点左右子树为空时0+0+1
       }else{//不是平衡二叉树
           return -1;
       }

2.接收maxDepth的返回值,如果为正,说明有高度,返回true

    public boolean isBalanced(TreeNode root) {
        if(root == null){//空树也是平衡二叉树
            return true;
        }
       return maxDepth(root) > 0;
    }

完整代码👇

class Solution {
    public int maxDepth(TreeNode root) {
       if(root == null){
           return 0;
       }
       int leftH = maxDepth(root.left);
       int rightH = maxDepth(root.right);
       if(leftH >=0 && rightH >=0 && Math.abs(leftH - rightH) <= 1){
           return Math.max(leftH,rightH)+1;
       }else{
           return -1;
       }

    }
    public boolean isBalanced(TreeNode root) {
        if(root == null){//空树也是平衡二叉树
            return true;
        }
       return maxDepth(root) > 0;
    }
}

运行结果:图①O(n*n) ,图②O(n)
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

keild

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值