代码随想录训练营第32天|509. 斐波那契数列、 70. 爬楼梯 、 746. 使用最小花费爬楼梯

一、斐波那契数列

1.动态规划五步骤

代码:

class Solution {
public:
    int fib(int n) {
        vector<int> dp(n+1);
        if (n<2) return n;
        dp[0]=0;
        dp[1]=1;
        for(int i=2;i<dp.size();i++)
        {
            dp[i]=dp[i-1]+dp[i-2];
        }
        return dp[n];
    }
};

二、爬楼梯

1.关键:到达第i阶的台阶,由前两个台阶相加得到,例如,第4个台阶,由到第二个台阶的种类(到第四个台阶迈两步)加到第三个台阶的种类(到第四个台阶迈一步)得到。

如果第2步一步一步走到第4步, 被第3步走到第4步包括了。

代码:

class Solution {
public:
    int climbStairs(int n) {
        //dp[i]为爬i个台阶到楼顶有多少种类
        vector<int> dp(n+1);
        //防止越界
        if(n<2) return n;
        dp[0]=0;
        //据题意,初始化从1开始
        dp[1]=1;
        dp[2]=2;
        for(int i=3;i<dp.size();i++)
        {
            dp[i]=dp[i-2]+dp[i-1];
        }
        return dp[n];
    }
};

三、使用最小花费爬楼梯 

1.递推公式没有推出来,其实就是最小单元就是三个,只需要维护三个,第i阶台阶,可以由前两个台阶的来,利用前两节最小消费推出第i阶的最小消费

代码:

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        //dp[i]为第i个楼梯,最小花费
        vector<int> dp(cost.size()+1);
        //0,1台阶不花费
        dp[0]=0;
        dp[1]=0;
        //从前向后递推
        for(int i=2;i<dp.size();i++)
        {
        //递推公式
        dp[i]=min(dp[i-2]+cost[i-2],dp[i-1]+cost[i-1]);
        }
        return dp[cost.size()];
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值