一、斐波那契数列
1.动态规划五步骤
代码:
class Solution {
public:
int fib(int n) {
vector<int> dp(n+1);
if (n<2) return n;
dp[0]=0;
dp[1]=1;
for(int i=2;i<dp.size();i++)
{
dp[i]=dp[i-1]+dp[i-2];
}
return dp[n];
}
};
二、爬楼梯
1.关键:到达第i阶的台阶,由前两个台阶相加得到,例如,第4个台阶,由到第二个台阶的种类(到第四个台阶迈两步)加到第三个台阶的种类(到第四个台阶迈一步)得到。
如果第2步一步一步走到第4步, 被第3步走到第4步包括了。
代码:
class Solution {
public:
int climbStairs(int n) {
//dp[i]为爬i个台阶到楼顶有多少种类
vector<int> dp(n+1);
//防止越界
if(n<2) return n;
dp[0]=0;
//据题意,初始化从1开始
dp[1]=1;
dp[2]=2;
for(int i=3;i<dp.size();i++)
{
dp[i]=dp[i-2]+dp[i-1];
}
return dp[n];
}
};
三、使用最小花费爬楼梯
1.递推公式没有推出来,其实就是最小单元就是三个,只需要维护三个,第i阶台阶,可以由前两个台阶的来,利用前两节最小消费推出第i阶的最小消费
代码:
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
//dp[i]为第i个楼梯,最小花费
vector<int> dp(cost.size()+1);
//0,1台阶不花费
dp[0]=0;
dp[1]=0;
//从前向后递推
for(int i=2;i<dp.size();i++)
{
//递推公式
dp[i]=min(dp[i-2]+cost[i-2],dp[i-1]+cost[i-1]);
}
return dp[cost.size()];
}
};