一、打家劫舍问题
注意:不一定隔一个就要偷
不偷的最高金额,和前一个房屋的最高金额一样
代码:
class Solution {
public:
int rob(vector<int>& nums) {
//dp[j] 表示考虑【0,j】房屋(并不一定要偷j房屋),偷窃到的最高金额
if(nums.size()==1) return nums[0];
vector<int> dp(nums.size(),0);
dp[0]=nums[0];
dp[1]=max(nums[0], nums[1]);
for(int i=2;i<nums.size();i++)
{
//偷i:dp[i-2]+nums[i]
//max为偷i,说明没有偷i-1;
//不偷i:dp[i-1] 但是这不表示i-1被偷了 如2,1,3,4
//max为不偷i:表明前一个i-1便是最高金额
dp[i]=max(dp[i-2]+nums[i],dp[i-1]);
}
return dp[nums.size()-1];
}
};
二维的
class Solution {
public:
int rob(vector<int>& nums) {
if(nums.size()==1) return nums[0];
vector<vector<int>> dp(nums.size(),vector<int>(2,0));
dp[0][0]=0;dp[0][1]=nums[0];
dp[1][0]=max(dp[0][0],dp[0][1]);
dp[1][1]=dp[0][0]+nums[1];
for(int i=2;i<nums.size();i++)
{
//偷i
dp[i][1]=dp[i-1][0]+nums[i];
dp[i][0]=max(dp[i-1][0],dp[i-1][1]);
}
return max(dp[nums.size()-1][0],dp[nums.size()-1][1]);
}
};
二、打家劫舍 III
明确后序遍历,从下向上
代码:
class Solution {
public:
vector<int> traversal(TreeNode* root)
{ vector<int> result{0,0};
//0表示不偷窃,1表示偷窃
if(!root) return vector<int>{0,0};
vector<int> left=traversal(root->left);
vector<int> right=traversal(root->right);
//不偷,则把左右偷与不偷的最大值相加
result[0]=max(left[1],left[0])+max(right[1],right[0]);
result[1]=root->val+left[0]+right[0];
return result;
}
int rob(TreeNode* root) {
vector<int> result=traversal(root);
return max(result[0],result[1]);
}
};