Kruskal算法求最小生成树

给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。

求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible

给定一张边带权的无向图 G=(V,E)G=(V,E),其中 VV 表示图中点的集合,EE 表示图中边的集合,n=|V|,m=|E|。

由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。

输入格式

第一行包含两个整数 n 和 m。

接下来 mm 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。

输出格式

共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible

数据范围

1≤n≤10^5
1≤m≤2∗10^5
图中涉及边的边权的绝对值均不超过 1000

输入样例:

4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4

输出样例:

6

点数很多

/*
第一步:先将所有边按权重从小到大排序
第二步:枚举每一条边a--b,权重是c,如果a--b不连通(a,b分别在一个集合中,但是a与b不连通)
    if(a,b不连通) 将这条边加入集合中
    其本质就是并查集 + 排序
*/
#include <iostream>
#include <algorithm>
#include <cstring>

using namespace std;
const int N = 100010, M = 200010, INF = 0x3f3f3f3f;

int p[N], n, m;

struct Edge
{
    int a, b, w;

    bool operator< (const Edge &W)const
    {
        return w < W.w;
    }
}edges[M];//存储边

int find(int x)  // 并查集
{
    if (p[x] != x) p[x] = find(p[x]);//寻找祖宗节点并进行状态压缩
    return p[x];
}

int kruskal()
{
    sort(edges, edges + m);
    
    for (int i = 1; i <= n; i ++ )  p[i] = i;// 初始化并查集,初始时候每一个点都是独立的集合,即自己就是根节点
    
    int res = 0, cnt = 0;//res记录路径长度,cnt记录用到的点数
    
    for (int i = 0; i < m; i ++ )
    {
        int a = edges[i].a, b = edges[i].b, w = edges[i].w;

        a = find(a), b = find(b);
        if(a != b)
        {
            p[a] = b;//如果两个点不联通,那么让他们连通
            res += w;
            cnt ++;
        }
    }
    if (cnt < n - 1) return INF;//如果没有n - 1个点,说明没有连通
    return res;
}

int main()
{
    cin >> n >> m;
    for (int i = 0; i < m; i ++ )
    {
        int a, b, w;
        cin >> a >> b >> w;
        edges[i] = {a, b, w};
    }
    int t = kruskal();
    
    if(t == INF)    puts("impossible");
    else cout << t << endl;
    
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值