动态规划算法之硬币找零问题详细解读(附带Java代码解读)

硬币找零问题是一个经典的动态规划问题。问题描述如下:

给定一个面值集合(例如:1 元、2 元、5 元、10 元等不同面值的硬币),以及一个目标金额 n,要求找出凑成这个目标金额的最少硬币数量。

1. 问题定义

假设有 m 种不同面值的硬币 coins={c1,c2,...,cm}\text{coins} = \{c_1, c_2, ..., c_m\}coins={c1​,c2​,...,cm​},我们需要凑出一个金额 n。要求的是使用最少的硬币数来凑出这个金额。如果不能凑出目标金额,则返回 -1。

举例:
  • 硬币面值:[1,2,5][1, 2, 5][1,2,5]
  • 目标金额:11

最少的硬币组合是 [5,5,1][5, 5, 1][5,5,1],所需硬币数为 3。

2. 动态规划思路

这类问题典型的动态规划解法是通过定义一个状态数组 dp[],其中 dp[i] 表示凑出金额 i 所需的最少硬币数量。

状态转移方程:

对于金额 i,我们可以从任意一个面值的硬币 cjc_jcj​ 出发(只要 i≥cj​),如果选择了面值为 cj 的硬币,则问题转化为子问题,即剩下的金额 i−cj​:

dp[i]=min(dp[i−cj​]+1)for each cj​ in coins

初始化:
  • 当金额为 0 时,所需硬币数为 0,即 dp[0] = 0
  • 当金额无法凑出时,dp[i] = \infty(假设初始化为一个很大的值,如 n+1)。
求解过程:

通过迭代的方式,从金额 1 到 n 逐步填充 dp[] 数组,每次选择最优解。

3. 动态规划解法代码实现

下面是使用动态规划解决硬币找零问题的 Java 代码:

import java.util.Arrays;

public class CoinChange {

    // 动态规划求解硬币找零问题
    public static int coinChange(int[] coins, int amount) {
        // 创建dp数组,初始化为amount+1(表示无法凑出)
        int[] dp = new int[amount + 1];
        Arrays.fill(dp, amount + 1);
        dp[0] = 0;  // 凑出0元需要0枚硬币

        // 遍历每一个金额
        for (int i = 1; i <= amount; i++) {
            // 遍历每种硬币面值
            for (int coin : coins) {
                // 如果硬币面值小于等于当前金额,才计算子问题
                if (i >= coin) {
                    dp[i] = Math.min(dp[i], dp[i - coin] + 1);
                }
            }
        }

        // 如果dp[amount]没有被更新,说明无法凑出amount
        return dp[amount] > amount ? -1 : dp[amount];
    }

    public static void main(String[] args) {
        int[] coins = {1, 2, 5};  // 硬币面值
        int amount = 11;  // 目标金额

        int result = coinChange(coins, amount);
        System.out.println("Minimum coins required: " + result);
    }
}

4. 代码详解

4.1 输入与输出
  • 输入:硬币面值数组 coins[] 和目标金额 amount
  • 输出:返回凑出目标金额所需的最少硬币数。如果无法凑出,返回 -1。
4.2 关键步骤
  1. 初始化

Arrays.fill(dp, amount + 1);
dp[0] = 0;
  • 创建并初始化 dp[] 数组。dp[i] 表示凑出金额 i 所需的最少硬币数。初始时假设所有金额都无法凑出,设为 amount + 1dp[0] = 0 表示凑出 0 元不需要硬币。

  • 动态规划填表

for (int i = 1; i <= amount; i++) {
    for (int coin : coins) {
        if (i >= coin) {
            dp[i] = Math.min(dp[i], dp[i - coin] + 1);
        }
    }
}
  • 遍历金额 i,对于每个金额,检查每种硬币面值 coin,如果当前硬币面值不超过金额 i,则可以选择该硬币,更新 dp[i]

  • 结果判断

return dp[amount] > amount ? -1 : dp[amount];
  1. 如果 dp[amount] 仍然是初始值 amount + 1,说明无法凑出目标金额,返回 -1;否则返回 dp[amount]

5. 复杂度分析

  • 时间复杂度O(n * m),其中 n 是目标金额 amountm 是硬币的种类数。动态规划需要遍历每个金额,并且对于每个金额,遍历每种硬币面值。
  • 空间复杂度O(n),只需要一个大小为 n + 1 的数组 dp[]

6. 优化与变种

6.1 空间优化

在该问题中,我们只需要用到 dp[i]dp[i - coin],因此可以通过空间压缩,使用一维数组来优化空间复杂度,已经在上述实现中应用。

6.2 找到所有可能的组合

除了找到最少硬币数,有时我们还希望找到所有的可能组合。在这种情况下,可以修改算法以存储每一步的解法路径。

6.3 无限硬币与有限硬币

此问题假设硬币数量是无限的。如果硬币数量是有限的,问题可以转化为一个背包问题,解决方法也会有所不同。

7. 总结

硬币找零问题是动态规划中的经典应用,通过建立状态转移方程,可以有效地解决最优子结构问题。此问题在现实中也有广泛应用,例如找零系统的设计、货币兑换、物品装箱等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值