硬币找零问题-详解动态规划

本文探讨了硬币兑换问题的解决方案,通过递归、带备忘录的递归及动态规划三种方法,逐步优化算法效率。介绍了如何使用动态规划解决硬币兑换问题,包括状态定义、转移方程、初始化条件和计算顺序。

1.问题引入

给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。

eg:
在这里插入图片描述

2.动态规划特点

在这里插入图片描述

动态规划遵循一套固定的流程:递归的暴力解法 -> 带备忘录的递归解法 -> 非递归的动态规划解法。

3.递归解法

在这里插入图片描述

// 多叉树遍历/递归解法
class Solution {
public:
    // 目标金额amount时,返回需要最少的硬币个数
    int coinChange(vector<int>& coins, int amount) {
        if (amount == 0) {
            return 0;
        }

        int ans = INT_MAX;
        // 多叉树遍历
        for (auto coin : coins) {
            // 金额不可达
            if (amount - coin < 0) {
                continue;
            }
            int subProb = coinChange(coins, amount - coin);

            // 子问题无解
            if (subProb == -1) {
                continue;
            }

            ans = min(ans, subProb + 1);
        }

        return (ans == INT_MAX) ? -1 : ans;
    }
};

存在的问题:
在这里插入图片描述

4. 备忘录消除重复计算:自顶向下

// 方法三:带备忘录的解法
class Solution {
public:
    // 目标金额amount时,返回需要最少的硬币个数
    int coinChange(vector<int>& coins, int amount)
    {
        vector<int> memo(amount + 1, -2);
        return helper(coins, amount, memo);
    }

    int helper(vector<int>& coins, int amount, vector<int>& memo)
    {
        if (amount == 0) {
            return 0;
        }

        if (memo[amount] != -2) {
            return memo[amount];
        }
        int ans = INT_MAX;
        for (auto coin : coins) {
            if (amount - coin < 0) {
                continue;
            }

            int subProb = helper(coins, amount - coin, memo);
            // 子问题无解
            if (subProb == -1) {
                continue;
            }
            ans = min(ans, subProb + 1);
        }

        // 记录本轮结果
        memo[amount] = (ans == INT_MAX) ? -1 : ans;
        return memo[amount];
    }
};

5.动态规划步骤:自底向上

// 动态规划
class Solution {
public:
    int coinChange(vector<int>& coins, int amount)
    {
        vector<int> dp(amount + 1, amount + 1);
        dp[0] = 0;
        // 外层for 循环遍历所有状态
        for (int i = 1; i < amount + 1; i++) {
            // 内层 for 在求所有子问题 + 1 的最小值
            for (auto coin : coins) {
                // 金额不可达
                if (i - coin < 0) {
                    continue;
                }
                dp[i] = min(dp[i], 1 + dp[i - coin]);
            }
        }
        return dp[amount] == amount + 1 ? -1 : dp[amount];
    }
};

第一步:确定状态

在这里插入图片描述

第二步:确定转移方程

在这里插入图片描述

第三步:确定初始条件和边界情况

在这里插入图片描述

第四步:确定计算顺序

原则:当要计算等式左边F(X)是,右边的应该都已经计算出来了

1、遍历的过程中,所需的状态必须是已经计算出来的。
2、遍历的终点必须是存储结果的那个位置。

在这里插入图片描述

小结

在这里插入图片描述

详细说明leecode332

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值