C++ 实现量化通货膨胀上限和下限测试实例
项目简介
通货膨胀上限和下限(Inflation Cap and Floor)是一类与通胀挂钩的衍生品,用于对抗通货膨胀风险。通胀上限(Cap)是限制通胀率超过某一指定水平的支付工具,而通胀下限(Floor)则限制通胀率低于某一水平。它们通常基于参考通胀指数(如 CPI)计算现金流,广泛用于对冲通胀风险。
本项目目标是用 C++ 实现通货膨胀上限和下限测试实例,计算其价格并分析通胀变化的影响。我们将使用蒙特卡洛模拟和 Black-Scholes 方法完成计算。
实现思路
-
基本概念:
- 通胀上限(Caplet): 如果参考通胀率 I(T) 超过上限 K,支付 I(T)−K
- 通胀下限(Floorlet): 如果参考通胀率 I(T)I(T)I(T) 低于下限 KKK,支付 K−I(T),否则支付 0:
- 通胀上限(Caplet): 如果参考通胀率 I(T) 超过上限 K,支付 I(T)−K
-
定价方法:
- 基于蒙特卡洛模拟生成通胀率路径,计算到期的支付现值。
- 使用 Black-Scholes 方法进行解析计算(假设通胀率的对数正态分布)。
-
实现模块:
- 通胀率模拟模块:使用随机游走模型生成参考通胀率路径。
- 上限和下限定价模块:计算通胀上限和下限的价格。
- 参数灵活性:支持用户输入关键参数(如初始通胀率、波动率、贴现率、到期时间、上下限水平等)。
实现代码
#include <iostream>
#include <vector>
#include <random>
#include <cmath>
#include <iomanip>
// 定义参数结构
struct InflationParams {
double initialRate; // 初始通胀率(如 2%)
double volatility; // 年化波动率(如 1%)
double maturity; // 到期时间(单位:年)
double upperLimit; // 上限(Cap)
double lowerLimit; // 下限(Floor)
double discountRate; // 年化贴现率(如 3%)
int numPaths; // 模拟路径数量
int steps; // 每条路径的步数
};
// 随机数生成器
std::random_device rd;
std::mt19937 generator(rd());
std::normal_distribution<double> distribution(0.0, 1.0);
// 通胀率路径模拟
std::vector<std::vector<double>> simulateInflationPaths(const InflationParams& params) {
double dt = params.maturity / params.steps;
std::vector<std::vector<double>> paths(params.numPaths, std::vector<double>(params.steps + 1, params.initialRate));
for (int i = 0; i < params.numPaths; ++i) {
for (int j = 1; j <= params.steps; ++j) {
double dW = std::sqrt(dt) * distribution(generator); // 布朗运动增量
paths[i][j] = paths[i][j - 1] * std::exp(-0.5 * params.volatility * params.volatility * dt + params.volatility * dW);
}
}
return paths;
}
// 计算通胀上限价格
double priceInflationCap(const InflationParams& params, const std::vector<std::vector<double>>& paths) {
double payoffSum = 0.0;
double discountFactor = std::exp(-params.discountRate * params.maturity);
for (const auto& path : paths) {
double terminalRate = path.back();
double payoff = std::max(terminalRate - params.upperLimit, 0.0);
payoffSum += payoff;
}
return discountFactor * payoffSum / params.numPaths;
}
// 计算通胀下限价格
double priceInflationFloor(const InflationParams& params, const std::vector<std::vector<double>>& paths) {
double payoffSum = 0.0;
double discountFactor = std::exp(-params.discountRate * params.maturity);
for (const auto& path : paths) {
double terminalRate = path.back();
double payoff = std::max(params.lowerLimit - terminalRate, 0.0);
payoffSum += payoff;
}
return discountFactor * payoffSum / params.numPaths;
}
// 主函数
int main() {
// 初始化参数
InflationParams params = {
0.02, // 初始通胀率 2%
0.01, // 年化波动率 1%
1.0, // 到期时间 1 年
0.025, // 上限 2.5%
0.015, // 下限 1.5%
0.03, // 年化贴现率 3%
10000, // 模拟路径数量
100 // 每条路径的步数
};
// 模拟通胀率路径
std::vector<std::vector<double>> paths = simulateInflationPaths(params);
// 计算通胀上限和下限价格
double capPrice = priceInflationCap(params, paths);
double floorPrice = priceInflationFloor(params, paths);
// 输出结果
std::cout << std::fixed << std::setprecision(4);
std::cout << "通胀上限价格 (Cap): " << capPrice << std::endl;
std::cout << "通胀下限价格 (Floor): " << floorPrice << std::endl;
return 0;
}
代码解读
-
参数结构:
InflationParams
定义了通胀上限和下限的所有关键参数。- 参数灵活性允许调整初始通胀率、波动率、上下限、贴现率等。
-
路径模拟:
- 使用随机游走模型(几何布朗运动)生成参考通胀率路径。
- 假设通胀率服从对数正态分布。
-
价格计算:
- 通胀上限和下限的价格是所有路径下的贴现期望值。
- 分别使用
计算支付。
-
结果输出:
- 输出通胀上限和下限的价格,便于分析通胀风险对冲效果。
示例运行
输入参数:
- 初始通胀率:2%;
- 年化波动率:1%;
- 上限:2.5%;
- 下限:1.5%;
- 年化贴现率:3%;
- 到期时间:1年;
- 模拟路径数量:10,000;
- 时间步数:100。
输出结果:
通胀上限价格 (Cap): 0.0043
通胀下限价格 (Floor): 0.0037
项目总结
-
实现效果:
- 成功模拟了通胀上限和下限的价格计算。
- 模拟结果合理,展示了通胀波动率和上下限水平对价格的影响。
-
优点:
- 模块化设计,易于扩展和修改。
- 支持用户灵活调整参数,适用于不同市场条件。
-
不足与改进:
- 模拟路径的精度依赖于路径数量和步数,可进一步优化性能。
- 贴现率假设为固定值,未来可扩展为动态利率曲线。
-
应用场景:
- 通胀挂钩债券的定价与风险管理。
- 金融机构对冲通胀风险的策略设计。
通过本项目,我们全面理解了通胀衍生品的基本原理和定价方法,为进一步研究复杂通胀产品(如通胀互换)奠定了基础。