LeetCode101. 对称二叉树

文章介绍了如何判断一个二叉树是否轴对称,提供了一种递归和一种迭代的解决方案。递归方法通过比较节点及其子树的镜像对称性,而迭代方法利用双端队列逐层比较节点。两种方法的时间复杂度均为O(n),空间复杂度分别为O(n)和O(n/2)。
摘要由CSDN通过智能技术生成

101. 对称二叉树

一、题目

给你一个二叉树的根节点 root , 检查它是否轴对称。

示例 1:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Ci09xkEi-1690521063844)(D:\A_WHJ\Computer Science\typora图片\symtree1.jpg)]

输入:root = [1,2,2,3,4,4,3]
输出:true

示例 2:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-6Gs1nZYn-1690521063845)(D:\A_WHJ\Computer Science\typora图片\symtree2.jpg)]

输入:root = [1,2,2,null,3,null,3]
输出:false

提示:

  • 树中节点数目在范围 [1, 1000]
  • -100 <= Node.val <= 100

**进阶:**你可以运用递归和迭代两种方法解决这个问题吗?

二、题解
方法一:递归

算法思路(建议对照题干里的图片理解)

要判断一棵二叉树是否轴对称,我们可以使用递归的方法。轴对称意味着该二叉树左右两侧镜像对称,即左子树的左子节点和右子树的右子节点相等,并且左子树的右子节点和右子树的左子节点相等。

我们可以定义一个辅助函数 isMirror,该函数接受两个节点作为参数,然后递归地比较这两个节点及其子树是否镜像对称。如果这两个节点都为空,则它们是对称的;如果其中一个为空而另一个不为空,则它们不对称;如果两个节点都不为空,那么我们需要判断它们的值是否相等,并继续递归判断左右子树的对称性。

接下来,我们只需要调用 isMirror(root, root),其中 root 是二叉树的根节点,来判断整个二叉树是否轴对称。

具体实现

class Solution {
public:
    bool isSymmetric(TreeNode* root) {
        return isMirror(root, root);
    }
    
    bool isMirror(TreeNode* node1, TreeNode* node2) {
        if (node1 == nullptr && node2 == nullptr) {
            return true; // 两个空节点是对称的
        }
        
        if (node1 == nullptr || node2 == nullptr) {
            return false; // 一个空节点一个非空节点不对称
        }
        
        // 比较当前节点的值,并递归判断左右子树的对称性
        // 轴对称意味着左子树的左子节点和右子树的右子节点相等,并且左子树的右子节点和右子树的左子节点相等
        return (node1->val == node2->val) &&
               isMirror(node1->left, node2->right) &&
               isMirror(node1->right, node2->left);
    }
};

算法分析

  • 时间复杂度:对于每个节点,我们最多访问其两个子节点,因此时间复杂度是 O(N),其中 N 是节点的数量。
  • 空间复杂度:递归调用的栈空间取决于二叉树的高度,最坏情况下,树是一个链状结构,空间复杂度为 O(N)。在平均情况下,树的高度较小,空间复杂度较低。

总结

判断二叉树是否轴对称可以使用递归的方法。我们定义一个辅助函数 isMirror,该函数用于递归比较两个节点及其子树是否镜像对称。根据节点是否为空,以及节点值是否相等,我们可以判断节点是否对称。然后,我们只需要调用 isMirror(root, root) 来判断整个二叉树是否轴对称。这个算法的时间复杂度是 O(N),最坏空间复杂度是 O(N)。

方法二、迭代

算法思路

  1. 我们可以使用迭代的方法来判断对称性,使用一个队列(deque)来辅助我们逐层遍历二叉树节点。首先将根节点两次入队,因为在一开始的时候,我们需要比较的是根节点的左子树和右子树。

  2. 在每一次循环中,我们从队列中取出两个节点node1和node2,并进行比较:

    • 如果两个节点都为nullptr,说明当前层级上是对称的,继续下一次循环;
    • 如果其中一个节点为nullptr而另一个节点不为nullptr,说明当前层级上不对称,直接返回false;
    • 如果两个节点的值不相等,说明当前层级上不对称,直接返回false。
  3. 如果当前节点node1和node2的值相等,说明当前层级上是对称的,我们将node1的左子树和node2的右子树以及node1的右子树和node2的左子树按照相反的顺序入队,以便继续判断下一层级。

  4. 当队列为空时,说明二叉树的对称性已经判断完毕,没有发现不对称的部分,返回true。

具体实现

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    bool isSymmetric(TreeNode* root) {
        deque<TreeNode*> deq;
        if(root == nullptr) return true;
        deq.push_back(root);
        deq.push_back(root);
        while(!deq.empty()){
            TreeNode *node1 = deq.front();
            deq.pop_front();
            TreeNode *node2 = deq.front();
            deq.pop_front();
            if(node1 == nullptr && node2 == nullptr) continue;
            if(node1 == nullptr || node2 == nullptr) return false;
            if(node1->val != node2->val) return false;
            deq.push_back(node1->left);
            deq.push_back(node2->right);
            deq.push_back(node1->right);
            deq.push_back(node2->left);
        }
        return true;
    }
};

算法分析

  • 时间复杂度: 假设二叉树中有n个节点,每个节点都需要进出队列一次,所以时间复杂度为O(n)。
  • 空间复杂度: 使用了一个双端队列(deque)来辅助存储节点,最坏情况下可能存储n/2个节点,所以空间复杂度为O(n)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

KeepCoding♪Toby♪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值