区间dp(1388. 3n 块披萨)

class Solution {
    public int maxSizeSlices(int[] slices) {
       int n = slices.length,m = n / 3;
       return Math.max(h(slices,1,n - 1),h(slices,2,n));
       //第一个和最后一个不可以同时选 因此俩种情况分开计算
    }
    public int h(int[] slices,int s,int e){
        int n = slices.length,m = n / 3;
        int d[][] = new int[n + 1][m + 1];
        for(int i = s; i <= e; i++){
            for(int j = 1; j <= Math.min(i,m);j++){
     d[i][j] = Math.max(d[i - 1][j],(i >= 2 ? d[i - 2][j - 1]:0)+ slices[i - 1]);
            }
        }
        return d[e][m];
    }
}

/*
打家劫舍变形:

看着逻辑简单,但是问题:用啥算法?怎么确定哪一个开始,然后再怎么选?
线性看:那不就是在3n元素中找n个不连续的元素实现和最大!
动态规划:
dp[i][j]表示前i个元素中选出j个不相邻元素的最大值

 */

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

能吧够

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值