Google Agent Development Kit与MCP初试
一、背景知识
在开始之前,我们先了解几个关键概念:
- Ollama:一个本地化运行大语言模型(如Gemma、Qwen等)的开源工具,类似"手机上的离线版ChatGPT"
- ADK(Agent Development Kit):Google推出的智能代理开发框架,可以快速构建具备多工具调用能力的AI助手
- MCP(Model Control Protocol):实现AI模型与工具间通信的协议,好比AI的"手和脚"让语言模型可以操作外部工具
- LiteLLM:统一不同大模型API的适配层,可以理解为"AI界的通用充电器"
二、搭建智能大脑 - Ollama服务器
2.1 为什么要先搭建Ollama?
就像人类需要大脑才能思考一样,我们需要一个本地运行的AI模型作为智能核心。选择Ollama是因为它:
- 支持多种开源大模型(Gemma、Qwen等)
- 可在普通服务器部署
- 提供类似OpenAI的API接口
2.2 搭建ollama服务器
2.2.1 安装
# 安装Ollama(约1分钟)
curl -fsSL https://ollama.com/install.sh | sh
# 配置服务器可被外部访问(默认只能本机访问)
export OLLAMA_HOST="0.0.0.0:8000"
# 启动服务(保持此终端运行)
ollama serve
# 下载两个常用模型(根据网络情况需要较长时间)
ollama run gemma3:27b # 谷歌轻量级模型,适合简单任务
ollama run qwen3:32b # 阿里云通义千问,中文处理更优秀
2.2.2 试着用curl命令"问"AI一个问题:
curl http://10.22.4.73:8000/api/chat -d '{
"model": "qwen3:32b",
"messages": [
{"role": "user","content": "为什么天空是蓝色的?"}
]
}'
三、构建智能体工坊 - ADK环境
3.1 创建容器
docker run --runtime nvidia --gpus all -ti \
-v $PWD:/home -w /home --name adk \
-p 9002:8000 nvcr.io/nvidia/pytorch:24.03-py3 bash
参数说明:
--gpus all
:启用全部GPU-v $PWD:/home
:将当前目录挂载到容器内-p 9002:8000
:端口映射(容器内8000→外部9002)