【力扣】不同的子序列

一、题目描述

给你两个字符串 s t ,统计并返回在 s子序列t 出现的个数,结果需要对 109 + 7 取模。

示例 1:

输入:s = "rabbbit", t = "rabbit"输出
3
解释:
如下所示, 有 3 种可以从 s 中得到 "rabbit" 的方案。rabbbit
rabbbit
rabbbit

示例 2:

输入:s = "babgbag", t = "bag"
输出5
解释:
如下所示, 有 5 种可以从 s 中得到 "bag" 的方案。 
babgbag
babgbag
babgbag
babgbag
babgbag

提示:

  • 1 <= s.length, t.length <= 1000
  • st 由英文字母组成

二、解题思路

本题属于动态规划类型的。

1、状态表示

dp[i][j] 表示:在字符串 s 的 [0, j] 区间内的所有子序列中,有多少个 t 字符串中[0, i] 区间的这个子串。

2、状态转移方程

分两种情况来讨论:
  1. 子序列包含s[ j ](即以s[ j ]结尾):若s[ j ] = t[ i ],则dp[i][j] = dp[i - 1][j - 1] ;
  2. 子序列不包含s[ j ]:dp[i][j] = dp[i][j - 1] ;(子序列包含s[ j ],但s[ j ] != t[ i ]的情况也是此方程)

 所以,最终状态转移方程为dp[i][j] = dp[i][j - 1],如果有s[ j ] = t[ i ]情况,dp[i][j] += dp[i - 1][j - 1]

3、初始化

为了简化初始化,我们可以给dp表增加一行、一列(注意下标映射关系)。

因为s 的子序列中一定有一个空串,所以 t 为空串时,即dp表的第一行,都应初始化为1;

4、填表顺序

 「从上往下」填每一行,每一行「从左往右」。

 5、返回值

根据「状态表示」,返回 dp[m][n] 的值。

 

三、代码

class Solution {
    public int numDistinct(String s, String t) {
        int m = t.length();
        int n = s.length();
        //创建dp表
        int[][] dp = new int[m+1][n+1];
        //初始化
        for(int j = 0; j <= n; j++) {
            dp[0][j] = 1;
        }
        //填表
        for(int i = 1; i <= m; i++) {
            for(int j = 1; j <= n; j++) {
                dp[i][j] = dp[i][j-1];
                //注意下标映射关系,因为dp表增加了一行一列
                if(s.charAt(j-1) == t.charAt(i-1)) {
                    dp[i][j] += dp[i-1][j-1];
                }
            }
        }
        return dp[m][n];
    }
}

 

LeetCode力扣)上,有一个经典的算法题目叫做“最长连续序列”(Longest Continuous Increasing Subsequence),通常用C++或其他编程语言进行解答。这个题目的目的是找到一个给定整数数组中的最长递增子序列。递增子序列是数组中的一段连续元素,它们按顺序严格增大。 这里是一个简单的C++解决方案思路: ```cpp #include <vector> using namespace std; class Solution { public: int longestContinuousIncreasingSubsequence(vector<int>& nums) { if (nums.empty()) return 0; // 避免空数组的情况 int n = nums.size(); vector<int> dp(n, 1); // dp[i] 表示以nums[i]结尾的最长递增子序列长度 int max_len = 1; // 初始化最长递增子序列长度为1 for (int i = 1; i < n; ++i) { // 遍历数组,从第二个元素开始 if (nums[i] > nums[i-1]) { // 如果当前元素比前一个大 dp[i] = dp[i-1] + 1; // 更新dp值,考虑加入当前元素后的增长长度 max_len = max(max_len, dp[i]); // 检查是否更新了最长子序列长度 } } return max_len; // 返回最长连续递增子序列的长度 } }; ``` 在这个代码中,我们使用了一个动态规划(Dynamic Programming)的方法,维护了一个数组`dp`来存储每个位置以该位置元素结尾的最大递增子序列长度。遍历过程中,如果遇到当前元素大于前一个元素,则说明可以形成一个新的递增子序列,所以将`dp[i]`设置为`dp[i-1]+1`,并更新全局的最长子序列长度。 如果你想要深入了解这个问题,可以问: 1. 这个问题的时间复杂度是多少? 2. 动态规划是如何帮助解决这个问题的? 3. 如何优化这个算法,使其空间复杂度更低?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值