python(5)之处理数组

本文介绍了如何使用Numpy库中的isnan()函数处理数组中的缺失值,unique()函数处理重复值,以及concatenate(),hstack(),vstack()函数进行数组的拼接,强调了保持数组维度一致的重要性。
摘要由CSDN通过智能技术生成

上次代码结果如下:

1、处理数组的缺失值

1、isnan()函数

isnan()函数是Numpy模块里的一个可以标记数组中缺失值的位置

代码示例如下:

import numpy as np

ac =np.array([1,2,3,2,3,4,5,9,np.nan,1])

print(ac)

print(np.isnan(ac))

ac[np.isnan(ac)]=0

print(ac)

结果如下:

其中大家可以理解np.isnan()其实就是判定这个数组内有无NaN(Not a number)的函数

然后它将是  “不是数字的”标上True

然后接下来这行其实是我将不是数字的更改成0 所以可以使用这种方法将空缺值进行填入

2、处理属于数组的重复值

unique()函数

这个函数是将数组中的重读之提取出来然后进行从小到大排序

例:

import numpy as np

ac =np.array([1,2,3,2,3,4,5,9,3,1,8,7,6,5,5])

ac1 =np.unique(ac)

ac1,ac2 =np.unique(ac,return_counts=True)

print(ac1)

print(ac2)

结果如下:

3、拼接数组

1、concatenate()函数

注意点:需要注意在拼接数组过程中我所提及的这几个函数需要保持待合并的数组必须保持维度相同:一维数组与一维数组合并二维数组和二维数组合并

例子:如下

import numpy as np

ac =np.array([1,2,3,2,3,4,5,9,3,1,8,7,6,5,5])

ko =np.array([1,2,3,4,4,5,6,])

at = np.concatenate((ac,ko),axis=0)

print(at)

结果如下:

其中这里的axis与前面的一样 0表示行加  1表示列加

2、hstack函数与vstack函数

其中hstack函数是在行上拼接而vstack函数是在列方向上进行拼接

例子如下:

import numpy as np

ac =np.array([[1,2,3],[5,5,8]])

ko =np.array([[1,2,3],[4,4,5]])

uy = np.hstack((ac,ko))

at = np.vstack((ac,ko))

print(uy)

print(at)

结果如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

过度引用

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值