牛客周赛 Round 14

文章讨论了三个与字符串处理相关的编程题目:计算环形字符串中可删除字符数、计算整数序列操作次数使其变为目标值以及计算指定长度字符串的回文子串权值之和。涉及到了字符串遍历、条件判断和数学计算技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A、

小红拿到了一个环形字符串。所谓环形字符串,即首尾相连的字符串。

小红每次可以删除两个相邻的相同字符。小红想知道,最多可以删除多少个字符?

输入描述:

第一行输入一个正整数n,代表环形字符串的长度。
第二行输入一个长度为n,且仅由小写字母组成的字符串。请注意该字符串是首尾相连的。
1≤n≤10^5

输出描述:

最多可以删除的字符数量。

示例1

输入

5
abcba

输出

4

 这个题很经典啊 我感觉以前一直不会

思路:一个一个字符插进去  遇到和前一个一样  消去它们

然后只能是首尾消去了

#include<bits/stdc++.h>
using namespace std;
#define int long long 
#define fp(i,a,b) for(int i=a;i<=b;++i)
#define PII pair<int,int>
const int N=1e5+10;
const int mod=1e9+7;
const double eps=1e-5;
typedef double db;
string s;
int n;
list<char>q; 
signed main()
{
   cin>>n>>s;
   
   int sum=0;
    
   for(int i=0;i<n;i++)
   {
   	 if(!q.empty())
   	 {
   	 	 if(q.back()==s[i])sum+=2,q.pop_back();
   	 	 else q.push_back(s[i]);
	 }
	 else
	 {
	 	 q.push_back(s[i]);
	 }
   }
   
   while(q.size()>1&&q.front()==q.back()){
   	sum+=2;
   	q.pop_back();
   	q.pop_front();
   }
   
   cout<<sum<<"\n";
	return 0;
} 
//x*5n/6m=y
//x*5n=y*6m 
//x/y=6m/5n

B、

题目描述

小红拿到了一个正整数 x。她可以对 x 做以下操作:
1. 将 x 乘以5。
2. 若 x 是6的倍数,将 x 除以6。

例如,12经过一次操作可以变成60,也可以变成2。

现在小红想知道,如果要把 x 变成 y,需要操作多少次?一共有 t 组询问。

输入描述:

第一行输入一个正整数 t,代表询问次数。
接下来的 t 行,每行输入两个正整数 x 和 y ,代表一次询问。
数据范围:
1≤t≤1000
1≤x,y≤10^9

输出描述:

输出t行,对于每次询问,如果无论如何都不能把 x 变成 y,输出-1。否则输出操作次数。

示例1

输入

1
6 5

输出

2

说明

x除以6变为1,再乘5变为5,即操作2次可使x变为y
#include<bits/stdc++.h>
using namespace std;
#define int long long 
#define fp(i,a,b) for(int i=a;i<=b;++i)
#define PII pair<int,int>
const int N=1e5+10;
const int mod=1e9+7;
const double eps=1e-5;
typedef double db;
signed main()
{
    int t;
    cin>>t;
    while (t--) {
        int X,Y;
        cin>>X>>Y;
        int c5 = 0, c6=0, d5=0, d6=0;
        while (X%5==0) c5++, X/=5;
        while (X%6==0) c6++, X/=6;
        while (Y%5==0) d5++, Y/=5;
        while (Y%6==0) d6++, Y/=6;
        int ans;
        if (c5>d5||c6<d6|| X!=Y) ans=-1;
        else ans = d5-c5+c6-d6;
        cout<<ans<<"\n";
    }
	return 0;
} 


 

 这个是把x、y都溯源回本质 再进行判断。

D、

定义一个字符串的权值为:长度为3的回文子串的数量。
求长度为n的、仅由小写字母组成的所有字符串的权值之和。答案对10^9+7取模。
提示:共有26^n个字符串。

输入描述:

一个正整数n
1≤n≤10^12

输出描述:

长度为n的所有字符串权值之和,对10^9+7取模的值。

示例1

输入

3

输出

676

说明

长度为3的字符串中,有676个字符串的权值为1:aba、ovo等。

 先放代码。

#include<bits/stdc++.h>
using namespace std;
#define int long long 
#define fp(i,a,b) for(int i=a;i<=b;++i)
#define PII pair<int,int>
const int N=1e5+10;
const int mod=1e9+7;
const double eps=1e-5;
typedef double db;
int qsm(int x,int n)
{
	int res=1;
	while(n)
	{
		if(n&1)res=res*x%mod;
		x=x*x%mod;
		n>>=1;
	} 
	return res;
}
signed main()
{
    int n;
    
    cin>>n;
    
    if(n<3){
    	cout<<0<<"\n";
		return 0; 
	} 
	
	int sum=(n-2)*26*26%mod*qsm(26,n-3)%mod;
	cout<<sum<<"\n";
	return 0;
} 


n-2是我有这么多组可以平移 

26*26 是一组的里面的数量

qsm(26,n-3)是这一组3个字符以外 其他可以任选

C我不会 以后有空看看能不能补 看到头疼

关于Round 83 的具体题目和解答,目前并未提供直接的引用支持。然而,可以基于以往的经验以及类似的周赛模式来推测可能涉及的内容结构。 通常情况下,周赛会包含多个不同难度级别的题目,从简单的签到题(A 类型)到较难的挑战性问题(E 或 F 类型)。以下是根据已有经验构建的一般框架: ### 周赛 Round 83 可能的主题 #### A - 签到题 这类题目通常是简单算法的应用或者基础逻辑判断。例如: ```python def solve_a(): n = int(input()) result = sum(range(1, n + 1)) # 计算前N项自然数之和 print(result) solve_a() ``` 此部分无需深入解析,主要考察参赛者的基础编程能力[^1]。 #### B - 中等难度题 此类题目可能会涉及到数组操作、字符串处理或基本数据结构应用。比如给定一段文字统计特定字符频率的问题。 ```python from collections import Counter def solve_b(): s = input().strip() counter = Counter(s) most_common_char, count = counter.most_common(1)[0] print(most_common_char, count) solve_b() ``` 上述代码片段展示了如何利用Python内置库快速解决常见计数类问题[^2]。 #### C/D/E/F 更高阶挑战 这些更复杂的任务往往需要运用高级技巧如动态规划(DP),图论(Graph Theory)或者其他专门领域知识才能有效完成。由于缺乏具体的Round 83资料,这里仅给出一个假设性的例子有关最短路径寻找: ```python import heapq INF = float('inf') def dijkstra(graph, start_node): distances = {node: INF for node in graph} distances[start_node] = 0 priority_queue = [(0, start_node)] while priority_queue: current_distance, current_vertex = heapq.heappop(priority_queue) if current_distance > distances[current_vertex]: continue for neighbor, weight in graph[current_vertex].items(): distance = current_distance + weight if distance < distances[neighbor]: distances[neighbor] = distance heapq.heappush(priority_queue, (distance, neighbor)) return distances graph_example = { 'A': {'B': 1, 'C': 4}, 'B': {'A': 1, 'C': 2, 'D': 5}, 'C': {'A': 4, 'B': 2, 'D': 1}, 'D': {'B': 5, 'C': 1} } print(dijkstra(graph_example, 'A')) ``` 这段程序实现了经典的迪杰斯特拉算法用于求解加权无向图中的单源最短路径问题[^3]. 尽管无法确切知道每道实际考题是什么样子,但通过以上介绍应该能够帮助理解一般竞赛形式下的潜在考点及其解决方案设计方法.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值