前言
随着人工智能的快速发展,我们正慢慢进入AIGC的新时代,其中对自然语言的处理成为了智能化的关键一环,在这个大背景下,“Prompt工程”由此产生,并且正逐渐成为有力的工具...
LLM
(Large Language Model)大语言模型,具有许多参数的人工神经网络生成,使用自监督学习或半监督学习对大量未标记文本进行训练,在各种任务中表现出色。AI 并不是自主生成内容的,而是依赖于提示词的引导。提示词越清晰、具体,AI 的输出就越符合预期。
Prompt简介
Prompt是指一段文本,指令或者描述,用于引导预训练的语言模型理解用户意图并生成预期输出。
Prompt工程是一种基于预训练语言模型(PLM)或大语言模型(LLM),通过向模型提供精心设计的提示语,引导模型生成与任务相关的文本输出。通俗一点的将,Prompt工程就是通过编写特定Prompt提示词,询问AI时它返回的结果是被你引导的回答。
Prompt 工程流程:
Prompt的优势
1.快速迭代和调优
Prompt工程中的提示语(自然语言)可以很容易地进行快速迭代和调优。可以微调Prompt,快速尝试不同的生成结果,以找到最佳的输出。
2.适用广泛任务
prompt工程适用于各种场景,包括文本生成,问答统计,格式生成,编写代码,扮演角色等,其灵活性使其可以成为解决多种自然任务的强大工具,只需要设计相应的Prompt,例如可以根据提示词的不同实现不同功能,扮演不同角色。
3.节省资源
一个精心设计的Prompt可以等同于许多真实数据样本的效果,节省了大量的资源。相对于收集和标注大量的真实数据,设计好的Prompt可以用较少的输入来引导模型生成各种输出,节省大量资源。
编写Prompt技巧
设定信息丰富且清晰的语句
Prompt应该提供具体信息,以便模型理解任务的背景和要求。尽可能结构清晰,避免模糊的描述,让模型能够准确地理解任务,同时避免使用过于复杂的结构或难以理解的词汇。
Prompt:请问如何学习好英语
回答:这个是一个泛泛的回答,比较模糊,没有针对性
优化Prompt:我是一个在读大学生,准备考大学英语六级,请问如何能够学好英语呢
回答:设定情景,信息更丰富更清晰,回答出来肯定更符合预期
2.设定模型擅长的输入输出格式
我们可以在输入数据中加入特定的括号,如``` --- <> 等来限制我们的输入内容。
同理,尽量让模型输出格式化的文本,如JSON、HTML、TypeScript等,方便对结果进行管理。
Prompt:
请描述一个新款智能手表的特点。
回答:这款智能手表有一个高清显示屏,可以监测心率、睡眠质量、运动步数,还可以接收消息提醒,续航时间长,支持多种运动模式,防水等级高,时尚设计。
优化Prompt:
请以 JSON 格式生成一个新款智能手表的产品描述,结构如下:
{
"name": "<产品名称>",
"features": [
"<特点1>",
"<特点2>",
...
],
"price": "<价格>"
}
回答:
{
"name": "智能手表X200",
"features": [
"高清显示屏",
"心率监测",
"睡眠质量监测",
"运动步数记录",
"消息提醒",
"长续航",
"多种运动模式",
"高防水等级",
"时尚设计"
],
"price": "399 USD"
}
3.使用少量示例
提供少量示例文本,演示期望的输出格式。但示例文本会增加token数量,因此不能加太多示例。
Prompt: 请为以下狗的图片写一个简短的描述。
示例1: 金色的毛发,短嘴巴,