文章目录
ABSTRACT
以往的字体生成工作主要集中在标准打印字体上,即字符形状稳定、笔划清晰。毛笔手写字体的生成研究很少,涉及整体结构的变化和复杂笔画的转换。为了解决这一问题,我们提出了一种新的基于gan的图像平移模型,该模型集成了骨架信息。我们首先从训练图像中提取骨架,然后设计图像编码器和骨架编码器来提取相应的特征。设计了一个自我注意的精细注意模块来引导模型学习不同领域之间的区别特征。骨架鉴别器首先使用预先训练的生成器从生成的图像中合成骨架图像,然后判断其与目标图像的真实性。我们还提供了一个具有六种风格和15,000张高分辨率图像的大型笔触手写字体图像数据集。定量和定性实验结果都证明了我们所提出的模型的竞争力。
索引术语-字体生成,生成式对抗网络,画笔手写字体数据集.
1. INTRODUCTION
在几千年的中国书法历史中,出现了许多不同的书写风格。书法风格可以定义为骨架结构和笔触风格。骨架包含了文字的基本信息,如笔画的构成、位置、书写方向等,而笔画风格则意味着骨架的变形,如粗细、形状、书写强度等。直观地说,自动生成毛笔手写字体时,确保结构的正确性和风格的一致性是至关重要的。最近的作品[1-5]将中文字体生成表述为图像样式转换问题,将参考样式中的字符转换为特定的样式。由于手写中文字库的创建费时费力,目前的