文章目录
Abstract
由于汉字的复杂性和字体之间的显著差异,中文字体之间的抽象风格转换具有挑战性。用于此任务的现有算法通常学习每个字符的参考字体和目标字体之间的映射。随后,此映射用于生成目标字体中不存在的字符。然而,可用于训练的字符不可能覆盖丢失字符的所有细粒度部分,从而导致过拟合问题。结果,生成的目标字体的字符可能会遇到不完整或甚至部首和脏点的问题。为了解决这个问题,本文提出了一种多任务对抗式学习方法,称为MTfontGAN,以生成更生动的汉字。MTfontGAN学习将参考字体同时传输到多个目标字体。对不同任务的编码器进行对齐,以使它们集中于一般样式转换中的字符的重要部分。这种特征级的跨任务交互有效地提高了MTFONGAN的泛化能力。在三个中文字体数据集上评估了MTfontGAN的性能。实验结果表明,MTfontGAN在单任务设置中优于最先进的算法。更重要的是,增加任务数量可以提高所有任务的性能。
索引项样式转换、字体生成、多任务、GAN
【图1.中文字体样式转换示例。黑体字的八个汉字在保持内容一致的情况下,转为金黑体字。(黑体、精黑是两种中文字体)。】