-树是什么
树是计算机中非常重要的一种数据结构,它是由n(n>=1)个有限结点组成的一个具有层次关系的集合。这里只讨论由链表链接的树。
树具有以下特点
1.每个结点有零个或多个子结点;
2.没有父结点的结点为根结点;
3.每一个非根结点只有一个父结点;
4.每个结点及其后代结点整体上可以看做是一棵树,称为当前结点的父结点的一个子树;
-二叉树
如果一个树的每个结点的子节点不超过两个,则可以说这个树是二叉树.如下图就是一个标准的二叉树。
二叉树的中序遍历
中序遍历:按照访问左子树——根节点——右子树的方式遍历这棵树,而在访问左子树或者右子树的时候,我们按照同样的方式遍历,直到遍历完整棵树。
- 以上图这个树来说,中序遍历的结果应该是DBEAFCG-
递归实现中序遍历(传入根结点)
void inorder(TreeNode* T)
{
if(T == NULL){
return;
}
inorder(T->left);
printf("%d ", T->data);
inorder(T->right);
}
二叉树的前序遍历
前序遍历:按照访问根节点——左子树——右子树的方式遍历这棵树,而在访问左子树或者右子树的时候,我们按照同样的方式遍历,直到遍历完整棵树。
- 以上图这个树来说,前序遍历的结果应该是ABDECFG-
递归实现中序遍历(传入根结点)
void inorder(TreeNode* T)
{
if(T == NULL){
return;
}
printf("%d ", T->data);
inorder(T->left);
inorder(T->right);
}
二叉树的后序遍历
后序遍历:按照访问左子树——右子树——根节点的方式遍历这棵树,而在访问左子树或者右子树的时候,我们按照同样的方式遍历,直到遍历完整棵树。
- 以上图这个树来说,后序遍历的结果应该是DEBFGCA-
递归实现后序遍历(传入根结点)
void inorder(TreeNode* T)
{
if(T == NULL){
return;
}
printf("%d ", T->data);
inorder(T->left);
inorder(T->right);
}
用前序遍历的思想创建二叉树
void CreateTree(TreeNode** T)
{
int num;
scanf("%d", &num);
if(num == -1)
*T = NULL;
else
{
*T=(TreeNode*)malloc(sizeof(TreeNode));
(*T)->data = num;
CreateBiTree(&(*T)->left);
CreateBiTree(&(*T)->right);
}
}
传入参数为根节点的地址。注意在赋值的时候按照前序遍历的思想根节点——左子树——右子树来赋值,注意空结点不能跳过,需要输入-1(自定义)来表示根结点。
如要创建这个二叉树,需要依次输入A B D -1 -1 E -1 -1 C F -1 -1 G -1 -1。
二叉搜索(查找)(排序)树
二叉搜索树的节点放置规则是:任何节点的键值一定大于去其左子树中的每一个节点的键值,并小于其右子树的每一个节点的键值。
现有序列:A = {61, 87, 59, 47, 35, 73, 51, 98, 37, 93}。根据此序列构造二叉搜索树过程如下:
(1)i = 0,A[0] = 61,节点61作为根节点;
(2)i = 1,A[1] = 87,87 > 61,且节点61右孩子为空,故81为61节点的右孩子;
(3)i = 2,A[2] = 59,59 < 61,且节点61左孩子为空,故59为61节点的左孩子;
(4)i = 3,A[3] = 47,47 < 59,且节点59左孩子为空,故47为59节点的左孩子;
(5)i = 4,A[4] = 35,35 < 47,且节点47左孩子为空,故35为47节点的左孩子;
(6)i = 5,A[5] = 73,73 < 87,且节点87左孩子为空,故73为87节点的左孩子;
(7)i = 6,A[6] = 51,47 < 51,且节点47右孩子为空,故51为47节点的右孩子;
(8)i = 7,A[7] = 98,98 < 87,且节点87右孩子为空,故98为87节点的右孩子;
(9)i = 8,A[8] = 93,93 < 98,且节点98左孩子为空,故93为98节点的左孩子;创建完毕后如图2.4中的二叉搜索树:
二叉搜索树的创建,插入及删除
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef struct BSTNode//二叉树结构体
{
int data;//数据域
struct BSTNode *lchild,*rchild;//左右孩子指针
}BSTNode,*BSTree;
void InitTree(BSTree &T)//初始化二叉排序树
{
T = (BSTNode*)malloc(sizeof(BSTNode));//创建一个头结点
T->data = 0;
T->lchild = T->rchild = NULL;//头结点指针域NULL
}
void InsertTree(BSTree &T,int e)//二叉排序树的插入
{
if(!T)//找到插入位置,递归结束
{
BSTree S;
S = (BSTNode *)malloc(sizeof(BSTNode));//创建一个结点
S->data = e;//新结点的数据置为e
S->lchild = S->rchild = NULL;//新结点设置为叶子结点
T = S;//把新结点S接到已找到的插入位置
}
else if(e<T->data)
InsertTree(T->lchild,e);//将S插入左子树
else
InsertTree(T->rchild,e);//将S插入右子树
}
void CreateTree(BSTree &T)//创建二叉排序树
{
int a;
printf("请输入:");
scanf("%d",&a);
T->data = a;//将数据填入二叉排序树的根结点
while(1)//利用循环进行插入操作
{
scanf("%d",&a);
InsertTree(T,a);//将数据导入到二叉排序树T中
if(getchar()=='\n')//死循环结束条件
break;
}
}
void InOrderTraverse(BSTree T)//遍历二叉树,中序遍历
{
if(T)//递归终止条件是T为NULL
{
InOrderTraverse(T->lchild);//中序遍历左子树
printf("%d ",T->data);//输出打印根结点
InOrderTraverse(T->rchild);//中序遍历右子树
}
}
int SearchTree(BSTree T,int key)//二叉排序树的查找,这里的查找只能知道二叉树中有没有和key相等的值
{
if(T == NULL)//查找结束,且没有和key相等的值
return 0;
else if(T->data==key)//查找结束,二叉树中有和key相等的值
return T->data;
else if(key<T->data)
return SearchTree(T->lchild,key);//递归左子树
else
return SearchTree(T->rchild,key);//递归右子树
}
void DeleteTree(BSTree &T,int key)//从二叉排序树T中删除关键字等于key的结点 ,这里分三种情况进行讨论
{
BSTree f,p;
p = T;
f = NULL;//初始化
while(p)//利用循环找到关键字等于key的结点
{
if(p->data == key)//找到关键字等于key的结点,并跳出循环
break;
f = p;//结点f一直为结点p的双亲结点
if(p->data>key)
p = p->lchild;//在p的左子树中继续查找
else
p = p->rchild;//在p的右子树中继续查找
}
if(p == NULL)//找不到被删除的结点则返回
{
printf("没有找到要删除的值!\n");
return ;
}
/*第一种情况:被删除的结点(包含被删除的结点是根结点)的左右子树都存在,在其左子树上找中序最后一个结点填补*/
BSTree q,s;
if((p->lchild)&&(p->rchild))//被删结点p左右子树均不空
{
q = p;
s = p->rchild;
while(s->rchild)//在结点p的左子树中继续查找其前驱结点,即最右下结点
{
q = s;
s = s->rchild;//向右到尽头
}
p->data = s->data;//结点s中的数据顶替被删结点p中的
if(q != p)//重新连接结点q的右子树
q->rchild = s->lchild;
else//重新连接结点q的左子树
q->lchild = s->lchild;
free(s);//释放s
return ;//结束该函数
}
/*第二种情况:被删结点(包含根结点)缺右子树,且包含左右子树都缺(即叶子结点);缺右子树用左孩子填补*/
else if(p->rchild == NULL)//被删结点缺右子树
{
if(f)//判断被删结点是否为根结点,若是则f==NULL
{
if(f->lchild == p)//判断被删结点的双亲结点的左孩子是否为p
{
f->lchild = p->lchild;
p->lchild = NULL;
}
else//被删结点的双亲结点的右孩子为p
{
f->rchild = p->lchild;
p->lchild = NULL;
}
free(p);//释放结点p
return ;//结束该函数
}
else//被删结点为根结点
{
f = p;
p = p->lchild;
f->lchild = NULL;
free(f);//释放根结点
T = p;//根结点移位
return ;
}
}
/*第三种情况:被删结点(包含根结点)缺左子树,且包含左右子树都缺(即叶子结点);缺左子树用右孩子填补*/
else // else if(p->lchild == NULL)//被删结点缺左子树
{
if(f)//判断被删结点是否为根结点,若是则f==NULL
{
if(f->lchild == p)//判断被删结点的双亲结点的左孩子是否为p
{
f->lchild = p->rchild;
p->rchild = NULL;
}
else//被删结点的双亲结点的右孩子为p
{
f->rchild = p->rchild;
p->rchild = NULL;
}
free(p);//释放结点p
return ;//结束该函数
}
else//被删结点为根结点
{
f = p;
p = p->rchild;
f->lchild = NULL;
free(f);//释放根结点
T = p;//根结点移位
return ;//结束该函数
}
}
}
int main()
{
BSTree T;
InitTree(T);//初始化二叉排序树
CreateTree(T);//创建二叉排序树
InOrderTraverse(T);//打印
printf("\n");
if(SearchTree(T,16))//判断二叉排序树中是否存在关键字与key相等的结点 ,其中的16是测试值,可换变量
printf("存在:%d\n",SearchTree(T,16));
else
printf("不存在!\n");
DeleteTree(T,16);//二叉排序树的删除,删除与key相等的结点,其中的数值为测试值
printf("删除之后:");
InOrderTraverse(T);//再次打印结果,验证删除是否成功
free(T);
return 0;
}