- 博客(9)
- 收藏
- 关注
原创 YOLO网络详解以及YOLOv3/v4/v5与轻量级的对比
YOLOv5是一种单阶段目标检测算法(前面是Darknet框架,现在是PyTorch),该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:输入端:在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;基准网络:融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP1/2结构;
2025-03-11 10:44:31
1043
原创 蜂鸟E203 hbirdv2项目复现与FPGA开发【基于Linux】
蜂鸟E203 hbirdv2项目复现与FPGA开发【基于Linux】蜂鸟E203是一款由中国本土团队开发的开源RISC-V处理器内核,专为超低功耗与极小面积场景设计,适用于IoT设备、嵌入式系统及教育研究领域。
2025-03-06 22:11:33
1301
原创 蜂鸟E203 hbirdv2项目复现与移植到ZYNQ7020及构建FPGA工程【基于Windows】
蜂鸟E203 hbirdv2项目复现与移植到ZYNQ7020及构建FPGA工程【基于Windows】
2025-03-05 22:18:29
1537
4
原创 DeepSeek-R1满血版使用和部署全攻略——解决DeepSeek服务器繁忙的最优方案
随着DeepSeek最近的爆火,其用户量已经呈指数级增长,在使用网页版时,经常会出现"服务器繁忙"的提示(统计据说是日均触发率高达70%),在高峰时段(14:00-22:00)单次响应延迟达到了15秒以上,这实在影响使用体验。下面介绍DeepSeek-R1满血版使用和部署全攻略——解决DeepSeek服务器繁忙的最优方案
2025-03-03 21:59:53
2232
原创 YOLO系列综述——对比与分析
单阶段检测框架(You Only Look Once)多尺度训练(Multi-Scale Training)无锚点检测(Anchor-Free,YOLOv6):基于神经架构搜索(NAS)的极致轻量化设计。直接回归边界框坐标(x, y, w, h)轻量化设计(Focus结构,YOLOv5)重参数化卷积(RepVGG,YOLOv7)可编程梯度信息(PGI,YOLOv9)锚框机制(Anchor Boxes)端到端无NMS训练(YOLOv10)多任务统一框架(检测+分割+跟踪)损失函数优化(CIoU、DFL)
2025-02-25 19:58:18
717
原创 Linux/conda/Git等常用指令——持更
本文主要用来记录一些我常用到的Linux/Conda/Git的指令,便于记忆深化,会不断进行更新和补充。
2022-08-14 11:25:05
933
原创 卷积神经网络 实战CIFAR10-基于pytorch
本文将接着展示一个3+3层的卷积神经网络模型,并给出其在cifar10上的测试效果。上篇文章指路->https://blog.csdn.net/m0_62001119/article/details/121757703目录代码展示一、导包工作二、数据集处理三、可视化数据四、搭建网络五、训练网络测试效果心得参考代码展示一、导包工作import timeimport numpy as npimport torchimport torch.
2021-12-07 21:51:58
3342
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人