【线性代数】利用克拉默法则和逆矩阵求解线性方程组

本文介绍了如何使用克拉默法则和逆矩阵来解线性方程组,并通过Python的Numpy库进行实际操作。首先,解释了克拉默法则和逆矩阵的基本原理,然后展示了一个使用Numpy求解线性方程组的代码示例,最后对解线性方程组的方法进行了总结。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、克拉默法则介绍

在这里插入图片描述
在这里插入图片描述

二、 逆矩阵解线性方程组原理

在这里插入图片描述

三、使用克拉默法则和逆矩阵解线性方程组

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、使用Numpy 解线性方程组

import numpy as np
A=np.mat([[1,-1,-1],[2,-1,-3],[3,2,-5]])
b=np.mat([[2],[1],[0]])
def solving_equations(A,b):
    a=int(np.linalg.det(A))
    if a==0:
        print('系数矩阵A的行列式 det A=0,矩阵A不可逆,方程组无解')
    else:
        print('方程组的解向量为:')
        print(np.array(np.linalg.inv(A)*b,dtype='int'))
        print('='*100)
        print('方程组的解为:')
        j=1
        for i in np.array(np.linalg.inv(A)*b,dtype='int'):
            print('x'+str(j)+'='+str(i[0]))
            j+=1
    return np.array(np.linalg.inv(A)*b,dtype='int')
solving_equations(A,b)

输出如下:
在这里插入图片描述

五、解线性方程组总结

使用克拉默法则解线性方程组公式:
1.先判定其系数矩阵A是否可逆,若矩阵A的行列式|A|不等不0,则矩阵A可逆;
2.若系数矩阵A可逆,根据以下公式解方程组:
在这里插入图片描述
在这里插入图片描述
使用逆矩阵解线性方程组:
若系数矩阵A可逆,根据公式
在这里插入图片描述
得到方程组的唯一解向量x.
使用Numpy 解线性方程组:

np.linalg.inv(A)*b

若系数矩阵A可逆,系数矩阵A的逆矩阵乘以常数项的向量.

参考:工程数学 线性代数【第六版】同济大学数学系编

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西瓜WiFi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值