FORTRAN编程:克拉默法则解线性方程组
摘要:求解线性方程组的方法多种多样,例如:追赶法、高斯消去法、迭代法等等。我们在线性代数中学习过用克拉默法则来求解线性方程组,它旨在计算出几个矩阵的行列式即可求出方程的解,原理思想简单易懂,易于编程实现。
关键字:克拉默法则、线性方程组、行列式
关于如何利用克拉默法则求解线性方程组,原理很简单,我们首先求出其系数行列式,若系数行列式D0不为0,则方程有唯一解。(注意此方法不能求解系数行列式为0的线性方程组)然后将右端的常数项与Xi的系数替换,所得到的矩阵的行列式记为Di,则Xi的值为Di/D0。
源代码如下:
cccccc用克拉默法则求解线性方程组 /含有N个未知数的线性方程组
ccccc在求解过程中可以更改以下数组参数来接不同方程组
dimension a(4,4),b(4),c(4,4),d(4),e(4)
real d0,m,t
ccc输入未知数系数到a,将等式右边常数项到b,d用来存放行列式
cc由于每求一次行列式a(4,4)就会变成三角矩阵,所以用c(4,4)来存放初始矩阵
cc每求一次行列式再令a=c
cc同理对b(4)交换的时候b(4)也变
write(*,*)'输入数组a,b元素:'
do i=1,4,1
read(*,*) (a(i,j),j=1,4),b(i)
enddo
do 2 i=1,4,1