手撕CLIP -- Day2 -- dataset

手撕CLIP – Day2 – dataset

Contrastive Language-Image Pre-Training (CLIP) 模型原理

CLIP 网络结构图

在这里插入图片描述

CLIP 网络结构

Dataset代码 - 利用Mnist数据集做分类

Dataset代码

Part1 库函数

# 该模块主要为了实现CLIP的Mnist数据集的实现
'''
# Part1 引入相关的库函数
'''
import torch
from torch.utils import data
import torchvision
from torchvision import transforms

Part2 初始化一个数据集的类

'''
# Part2 实现数据的预处理和数据集的下载
'''

transform_action=transforms.Compose([
    transforms.ToTensor() # 从Pillow到Tensor,除了255,变换了通道的顺序(img_size,img_size,channel)->(channel,img_size,img_size)
])

Mnist_dataset=torchvision.datasets.MNIST(root='Mnist_dataset',train=True,transform=transform_action,download=True)

Part3 测试

'''
# Part3 测试
'''

if __name__ == '__main__':
    import matplotlib.pyplot as plt

    ds = Mnist_dataset
    img, label = ds[0]
    print(label)
    plt.imshow(img.permute(1, 2, 0))
    plt.show()

参考

视频讲解:【多模态】复现OpenAI的CLIP模型_哔哩哔哩_bilibili

模型原理讲解:手撕CLIP – Day1 – 基础原理-CSDN博客

github资料:YanxinTong/CLIP_Pytorch: 利用 Pytorch 手撕 CLIP 模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值