手撕CLIP -- Day1 -- 基础原理

手撕CLIP – Day1 – 基础原理

Contrastive Language-Image Pre-Training (CLIP) 模型原理

1. CLIP 网络结构图:

在这里插入图片描述

CLIP 网络结构

2. CLIP简介

CLIP(Contrastive Language-Image Pre-Training)模型由OpenAI提出,旨在通过对比学习将图像和文本映射到同一个嵌入空间中。它能够处理包括图像分类、目标检测、零样本学习等在内的各种视觉任务。CLIP的创新之处在于使用大量的图像和文本对进行训练,而不是依赖于特定任务的标签数据,具有较好的迁移学习能力。

3. CLIP的基本思想

CLIP通过将图像和文本嵌入到同一个向量空间,利用对比学习的方法,学会了将图像和描述这些图像的文本语义关联起来。具体而言,CLIP通过以下两部分来进行训练:

3.1 图像编码器

CLIP使用了一个深度卷积神经网络(CNN)或Transformer网络作为图像编码器,将图像转化为一个固定维度的特征向量。

3.2 文本编码器

CLIP采用了一个文本编码器,将输入的文本(如图像的描述或标签)转化为一个固定维度的向量。文本编码器通常使用基于Transformer的架构,如GPT或BERT模型。

4. 对比学习

CLIP的训练目标是通过对比学习来最大化图像和文本之间的相似性。具体来说,CLIP通过以下方式进行训练:

  • Step1:对于一个图像-文本对,CLIP将图像和文本分别通过图像编码器和文本编码器进行处理,得到对应的嵌入向量。
  • Step2:通过计算图像和文本嵌入向量之间的相似性(通常使用余弦相似度),来衡量它们之间的相关性。
  • 目标:CLIP的训练目标是:对于一对正确的图像和文本,其嵌入向量的相似度尽可能高;对于错误的图像-文本对,嵌入向量的相似度尽可能低。

4.1 损失函数

CLIP使用了一个对比损失函数来优化模型。该损失函数通常基于温度缩放的交叉熵(temperature-scaled cross-entropy),它鼓励图像和文本嵌入向量在正确对齐时具有高相似度,并且对不相关的图像和文本对具有较低的相似度。

4.2 训练过程

CLIP模型在一个庞大的图像-文本对数据集上进行训练,通常是数亿对图像和文本。通过大量的样本,模型学习到了一种通用的图像-文本嵌入空间,该空间可以用于多种下游任务(如零样本分类、图像生成等)。

5. CLIP的特点

  • 零样本学习能力:CLIP通过预训练的方式,学会了跨模态的语义映射,因此能够执行零样本学习任务。在没有特定任务的训练数据的情况下,CLIP可以在许多任务上进行推理。
  • 强大的迁移学习能力:由于CLIP训练时使用的是大规模的图像-文本数据集,它能够在不同的任务之间进行迁移,表现出强大的泛化能力。
  • 广泛的应用场景:CLIP不仅能够进行图像分类,还可以应用于图像检索、文本生成、图像生成等多个领域。

6. CLIP的应用

  • 图像-文本匹配:CLIP能够根据给定的文本描述,返回最相关的图像,或者根据图像返回最合适的文本描述。
  • 零样本分类:通过输入图像和标签文本,CLIP可以在没有任何特定标签样本的情况下,预测图像的类别。
  • 多模态生成任务:CLIP在结合生成模型(如DALL·E)时,能够基于文本生成与之匹配的图像。

7. 总结

CLIP通过将图像和文本嵌入到同一个空间,实现了跨模态学习,在多个视觉任务中都表现出了强大的能力。其通过大规模的图像-文本对进行对比学习,使得模型能够高效地捕捉图像与文本之间的关系,并且可以广泛应用于图像分类、检索、生成等多种任务中。

参考:

视频讲解:【多模态】复现OpenAI的CLIP模型_哔哩哔哩_bilibili

github资料:YanxinTong/CLIP_Pytorch: 利用 Pytorch 手撕 CLIP 模型

爬虫Python学习是指学习如何使用Python编程语言来进行网络爬取和数据提取的过程。Python是一种简单易学且功能强大的编程语言,因此被广泛用于爬虫开发。爬虫是指通过编写程序自动抓取网页上的信息,可以用于数据采集、数据分析、网站监测等多个领域。 对于想要学习爬虫的新手来说,Python是一个很好的入门语言。Python的语法简洁易懂,而且有丰富的第三方库和工具,如BeautifulSoup、Scrapy等,可以帮助开发者更轻松地进行网页解析和数据提取。此外,Python还有很多优秀的教程和学习资源可供选择,可以帮助新手快速入门并掌握爬虫技能。 如果你对Python编程有一定的基础,那么学习爬虫并不难。你可以通过观看教学视频、阅读教程、参与在线课程等方式来学习。网络上有很多免费和付费的学习资源可供选择,你可以根据自己的需求和学习风格选择适合自己的学习材料。 总之,学习爬虫Python需要一定的编程基础,但并不难。通过选择合适的学习资源和不断实践,你可以逐步掌握爬虫的技能,并在实际项目中应用它们。 #### 引用[.reference_title] - *1* *3* [如何自学Python爬虫? 零基础入门教程](https://blog.csdn.net/zihong523/article/details/122001612)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [新手小白必看 Python爬虫学习路线全面指导](https://blog.csdn.net/weixin_67991858/article/details/128370135)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值