Dist Max 2
题意
n个点坐标,任意两个点间距离为横纵坐标之差绝对值较小的那个,最大距离是多少。
思路
对于最小值最大要考虑二分,题中给的数据范围0≤xi,yi≤1e9,所以从0~1e9不断二分答案,并check是否存在。即是否存在两个点使得两点间距离>=mid。
#define _CRT_SECURE_NO_WARNINGS 1;
#include <iostream>
#include <algorithm>
#include <math.h>
#include <string.h>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <unordered_map>
using namespace std;
#define off ios::sync_with_stdio(false);
#define INF 0x3f3f3f3f
#define forn(i,n) for(int i = 0; i < int(n); i++)
#define scan1(n) scanf("%d",&n)
#define scan2(n,m) scanf("%d %d",&n,&m)
#define scan3(a,b,c) scanf("%d %d %d",&a,&b,&c)
const int N = 200000 + 10;
const int M = 1e6 + 10;
const int mod = 1e9 + 7;
typedef pair<int, int> PII;
typedef long long ll;
int n;
struct node {
int x, y;
}e[N];
bool cmp(node a, node b) {
if (a.x == b.x) return a.y < b.y;
return a.x < b.x;
}
int check(int mid) {
int j = 1;
int mi = INF, ma = -1;
for (int i = 1; i <= n; i++) {
//证明存在性,找最大的两个值
while (j <= n && e[i].x - e[j].x >= mid) {
mi = min(e[j].y, mi);
ma = max(e[j].y, ma);
j++;
}
if (e[i].y - mi >= mid || ma - e[i].y >= mid) return 1;
}
return 0;
}
int main()
{
off;
cin >> n;
for (int i = 1; i <= n; i++) cin >> e[i].x >> e[i].y;
sort(e + 1, e + n + 1, cmp);
int l = 0; int r = 1e9;
int ans = 0;
while (l <= r) {
int mid = (l + r) / 2;
if (check(mid)) ans = mid, l = mid + 1;
else r = mid - 1;
}
cout << ans << endl;
return 0;
}
Insurance
题意
n天每天亏损a[i],买保险之后将补偿min(a[i],2*x),x为任意值,使得总亏损a[i] + x - min(a[i],2*x)的期望最小。
思路
前缀和。 下面的是开始思路,后面有更简介思路。
每天的亏损为
1. a[i] - x ,a[i] > 2x
2. x ,a[i]<2x
亏损与x有关,问题是如何找x。可以暴力每个a[i],以a[i]/2为x,计算每次总和找最小即可。所以用到前缀和,排序之后每次暴力的时候总值其实为 sum[n] - sum[i] - (n - i - i) * x。
#define _CRT_SECURE_NO_WARNINGS 1;
#include <iostream>
#include <algorithm>
#include <math.h>
#include <string.h>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <unordered_map>
using namespace std;
#define off ios::sync_with_stdio(false);
#define INF 0x3f3f3f3f
#define forn(i,n) for(int i = 0; i < int(n); i++)
#define scan1(n) scanf("%d",&n)
#define scan2(n,m) scanf("%d %d",&n,&m)
#define scan3(a,b,c) scanf("%d %d %d",&a,&b,&c)
const int N = 200000 + 10;
const int M = 1e6 + 10;
const int mod = 1e9 + 7;
typedef pair<int, int> PII;
typedef long long ll;
double a[N];
double sum[N];
int main()
{
off;
int n;
cin >> n;
for (int i = 1; i <= n; i++) cin >> a[i];
sort(a + 1, a + 1 + n);
for (int i = 1; i <= n; i++) sum[i] = sum[i - 1] + a[i];
double ans = INF;
for (int i = 1; i <= n; i++) {
double x = a[i] / 2;
double t = sum[n] - sum[i] - (n - i - i) * x;
ans = min(ans, t / n);
}
printf("%.6lf\n", ans);
return 0;
}
思路2
以某一点的值的一半作为x的话,左边的数取x,右边的数取a[i]-x,那么我们取中间数为x,假如数的个数为偶数的话,取x的数的个数为n/2,取a[i]-x的也有n/2个,那答案就是右边的数的和。奇数的话相当于取x的多一个,答案就是有变数的和加x。
#define _CRT_SECURE_NO_WARNINGS 1;
#include <iostream>
#include <algorithm>
#include <math.h>
#include <string.h>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <unordered_map>
using namespace std;
#define off ios::sync_with_stdio(false);
#define INF 0x3f3f3f3f
#define forn(i,n) for(int i = 0; i < int(n); i++)
#define scan1(n) scanf("%d",&n)
#define scan2(n,m) scanf("%d %d",&n,&m)
#define scan3(a,b,c) scanf("%d %d %d",&a,&b,&c)
const int N = 200000 + 10;
const int M = 1e6 + 10;
const int mod = 1e9 + 7;
typedef pair<int, int> PII;
typedef long long ll;
double a[N];
int main()
{
off;
int n;
cin >> n;
double sum = 0;
for (int i = 1; i <= n; i++) {
cin >> a[i];
}
sort(a + 1, a + n + 1);
for (int i = (1 + n) >> 1; i <= n; i++) {
sum += a[i];
}
if (n % 2) sum -= a[(1 + n) >> 1] / 2;
else sum -= a[(1 + n) >> 1];
printf("%.6lf\n", sum / n);
return 0;
}
One More aab aba baa
题意
找给出的字符串的第k个全排列
dfs做法
#define _CRT_SECURE_NO_WARNINGS 1;
#include <iostream>
#include <algorithm>
#include <math.h>
#include <string.h>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <unordered_map>
using namespace std;
#define off ios::sync_with_stdio(false);
#define INF 0x3f3f3f3f
#define forn(i,n) for(int i = 0; i < int(n); i++)
#define scan1(n) scanf("%d",&n)
#define scan2(n,m) scanf("%d %d",&n,&m)
#define scan3(a,b,c) scanf("%d %d %d",&a,&b,&c)
const int N = 1e5 + 10;
const int M = 1e6 + 10;
const int mod = 1e9 + 7;
typedef pair<int, int> PII;
typedef long long ll;
int k;
vector<string> ans;
void swap(char& a, char& b) {
char t = a;
a = b;
b = t;
}
void dfs(char s[], int p, int len) {
if (p == len) {
ans.push_back(s);
}
for (int i = p; i < len; i++) {
swap(s[p], s[i]);
dfs(s, p + 1, len);
swap(s[p], s[i]);
}
}
int main()
{
off;
char s[10];
cin >> s >> k;
int len = strlen(s);
sort(s, s + len);
dfs(s, 0, len);
sort(ans.begin(), ans.end());
ans.erase(unique(ans.begin(), ans.end()), ans.end());
cout << ans[k - 1] << endl;
return 0;
}
next_permutation
按升序进行全排列,如果有下一个返回true,反之false。
#define _CRT_SECURE_NO_WARNINGS 1;
#include <iostream>
#include <algorithm>
#include <math.h>
#include <string.h>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <unordered_map>
using namespace std;
#define off ios::sync_with_stdio(false);
#define INF 0x3f3f3f3f
#define forn(i,n) for(int i = 0; i < int(n); i++)
#define scan1(n) scanf("%d",&n)
#define scan2(n,m) scanf("%d %d",&n,&m)
#define scan3(a,b,c) scanf("%d %d %d",&a,&b,&c)
const int N = 1e5 + 10;
const int M = 1e6 + 10;
const int mod = 1e9 + 7;
typedef pair<int, int> PII;
typedef long long ll;
int main()
{
off;
string s;
int k;
cin >> s >> k;
sort(s.begin(), s.end());
while (k > 1) {
next_permutation(s.begin(), s.end());
k--;
}
cout << s << endl;
return 0;
}
Coprime 2
题意
n个数从1~m内找到gcd(a[i],k)=1的k。
思路
将每个数的因数记录下来,因数的倍数记录下来,m内剩余的数就是答案。
根据算数基本定理:任何一个≥2的自然数 N都可以唯一分解成有限个素数的幂的乘积。我们只记录质因数也是可以的。