7.19 补题

Dist Max 2

题意

n个点坐标,任意两个点间距离为横纵坐标之差绝对值较小的那个,最大距离是多少。

思路

对于最小值最大要考虑二分,题中给的数据范围0≤xi​,yi​≤1e9,所以从0~1e9不断二分答案,并check是否存在。即是否存在两个点使得两点间距离>=mid。

#define _CRT_SECURE_NO_WARNINGS 1;
#include <iostream>
#include <algorithm>
#include <math.h>
#include <string.h>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <unordered_map>
using namespace std;
#define off ios::sync_with_stdio(false);
#define INF 0x3f3f3f3f
#define forn(i,n) for(int i = 0; i < int(n); i++)
#define scan1(n) scanf("%d",&n)
#define scan2(n,m) scanf("%d %d",&n,&m)
#define scan3(a,b,c) scanf("%d %d %d",&a,&b,&c)

const int N = 200000 + 10;
const int M = 1e6 + 10;
const int mod = 1e9 + 7;
typedef pair<int, int> PII;
typedef long long ll;

int n;

struct node {
    int x, y;
}e[N];

bool cmp(node a, node b) {
    if (a.x == b.x) return a.y < b.y;
    return a.x < b.x;
}

int check(int mid) {
    int j = 1;
    int mi = INF, ma = -1;
    for (int i = 1; i <= n; i++) {
        //证明存在性,找最大的两个值
        while (j <= n &&  e[i].x - e[j].x >= mid) {
            mi = min(e[j].y, mi);
            ma = max(e[j].y, ma);
            j++;
        }
        if (e[i].y - mi >= mid || ma - e[i].y >= mid) return 1;
    }
    return 0;
}

int main()
{
    off;

    cin >> n;
    for (int i = 1; i <= n; i++) cin >> e[i].x >> e[i].y;
    sort(e + 1, e + n + 1, cmp);
    int l = 0; int r = 1e9;
    int ans = 0;
    while (l <= r) {
        int mid = (l + r) / 2;
        if (check(mid)) ans = mid, l = mid + 1;
        else r = mid - 1;
    }
    cout << ans << endl;
    return 0;
}

Insurance

题意

n天每天亏损a[i],买保险之后将补偿min(a[i],2*x),x为任意值,使得总亏损a[i] + x  - min(a[i],2*x)的期望最小。

思路

前缀和。 下面的是开始思路,后面有更简介思路。

每天的亏损为

1. a[i] - x ,a[i] > 2x

2. x ,a[i]<2x

 亏损与x有关,问题是如何找x。可以暴力每个a[i],以a[i]/2为x,计算每次总和找最小即可。所以用到前缀和,排序之后每次暴力的时候总值其实为 sum[n] - sum[i] - (n - i - i) * x。

#define _CRT_SECURE_NO_WARNINGS 1;
#include <iostream>
#include <algorithm>
#include <math.h>
#include <string.h>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <unordered_map>
using namespace std;
#define off ios::sync_with_stdio(false);
#define INF 0x3f3f3f3f
#define forn(i,n) for(int i = 0; i < int(n); i++)
#define scan1(n) scanf("%d",&n)
#define scan2(n,m) scanf("%d %d",&n,&m)
#define scan3(a,b,c) scanf("%d %d %d",&a,&b,&c)

const int N = 200000 + 10;
const int M = 1e6 + 10;
const int mod = 1e9 + 7;
typedef pair<int, int> PII;
typedef long long ll;

double a[N];
double sum[N];

int main()
{
    off;
    int n;
    cin >> n;
    for (int i = 1; i <= n; i++) cin >> a[i];
    sort(a + 1, a + 1 + n);
    for (int i = 1; i <= n; i++) sum[i] = sum[i - 1] + a[i];
    double ans = INF;
    for (int i = 1; i <= n; i++) {
        double x = a[i] / 2;
        double t = sum[n] - sum[i] - (n - i - i) * x;
        ans = min(ans, t / n);
    }
    printf("%.6lf\n", ans);
    return 0;
}

思路2 

以某一点的值的一半作为x的话,左边的数取x,右边的数取a[i]-x,那么我们取中间数为x,假如数的个数为偶数的话,取x的数的个数为n/2,取a[i]-x的也有n/2个,那答案就是右边的数的和。奇数的话相当于取x的多一个,答案就是有变数的和加x。

#define _CRT_SECURE_NO_WARNINGS 1;
#include <iostream>
#include <algorithm>
#include <math.h>
#include <string.h>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <unordered_map>
using namespace std;
#define off ios::sync_with_stdio(false);
#define INF 0x3f3f3f3f
#define forn(i,n) for(int i = 0; i < int(n); i++)
#define scan1(n) scanf("%d",&n)
#define scan2(n,m) scanf("%d %d",&n,&m)
#define scan3(a,b,c) scanf("%d %d %d",&a,&b,&c)

const int N = 200000 + 10;
const int M = 1e6 + 10;
const int mod = 1e9 + 7;
typedef pair<int, int> PII;
typedef long long ll;

double a[N];

int main()
{
    off;
    int n;
    cin >> n;
    double sum = 0;
    for (int i = 1; i <= n; i++) {
        cin >> a[i];
    }
    sort(a + 1, a + n + 1);
    for (int i = (1 + n) >> 1; i <= n; i++) {
        sum += a[i];
    }
    if (n % 2) sum -= a[(1 + n) >> 1] / 2;
    else sum -= a[(1 + n) >> 1];
    printf("%.6lf\n", sum / n);
    return 0;
}

One More aab aba baa

题意

找给出的字符串的第k个全排列

dfs做法

#define _CRT_SECURE_NO_WARNINGS 1;
#include <iostream>
#include <algorithm>
#include <math.h>
#include <string.h>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <unordered_map>
using namespace std;
#define off ios::sync_with_stdio(false);
#define INF 0x3f3f3f3f
#define forn(i,n) for(int i = 0; i < int(n); i++)
#define scan1(n) scanf("%d",&n)
#define scan2(n,m) scanf("%d %d",&n,&m)
#define scan3(a,b,c) scanf("%d %d %d",&a,&b,&c)

const int N = 1e5 + 10;
const int M = 1e6 + 10;
const int mod = 1e9 + 7;
typedef pair<int, int> PII;
typedef long long ll;

int k;
vector<string> ans;

void swap(char& a, char& b) {
    char t = a;
    a = b;
    b = t;
}

void dfs(char s[], int p, int len) {
    if (p == len) {
        ans.push_back(s);
    }
    for (int i = p; i < len; i++) {
        swap(s[p], s[i]);
        dfs(s, p + 1, len);
        swap(s[p], s[i]);
    }
}

int main()
{
    off;
    char s[10];
    cin >> s >> k;
    int len = strlen(s);
    sort(s, s + len);
    dfs(s, 0, len);
    sort(ans.begin(), ans.end());
    ans.erase(unique(ans.begin(), ans.end()), ans.end());
    cout << ans[k - 1] << endl;
    return 0;
}

next_permutation

按升序进行全排列,如果有下一个返回true,反之false。

#define _CRT_SECURE_NO_WARNINGS 1;
#include <iostream>
#include <algorithm>
#include <math.h>
#include <string.h>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <unordered_map>
using namespace std;
#define off ios::sync_with_stdio(false);
#define INF 0x3f3f3f3f
#define forn(i,n) for(int i = 0; i < int(n); i++)
#define scan1(n) scanf("%d",&n)
#define scan2(n,m) scanf("%d %d",&n,&m)
#define scan3(a,b,c) scanf("%d %d %d",&a,&b,&c)

const int N = 1e5 + 10;
const int M = 1e6 + 10;
const int mod = 1e9 + 7;
typedef pair<int, int> PII;
typedef long long ll;

int main()
{
    off;
    string s;
    int k;
    cin >> s >> k;
    sort(s.begin(), s.end());
    while (k > 1) {
        next_permutation(s.begin(), s.end());
        k--;
    }
    cout << s << endl;
    return 0;
}

Coprime 2

题意

n个数从1~m内找到gcd(a[i],k)=1的k。

思路

将每个数的因数记录下来,因数的倍数记录下来,m内剩余的数就是答案。

根据算数基本定理:任何一个≥2的自然数 N都可以唯一分解成有限个素数的幂的乘积。我们只记录质因数也是可以的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值