- 博客(2)
- 收藏
- 关注
原创 DataWhaleAI夏令营:极端降水预测baseline
Feature部分time=0)Feature类用于处理特征数据,这些数据通常作为模型的输入。__init__方法:初始化Feature实例,接收特征数据的路径(),年份列表(years),和预测步长(fcst_steps然后调用方法来构建一个字典,该字典以初始化时间作为键,特征数据路径作为值。方法:遍历指定路径下的所有年份,然后列出每个年份下的所有初始化时间的目录。对于每个初始化时间,将对应的数据路径添加到字典中。get_fts方法:根据给定的初始化时间(init_time。
2024-07-28 23:40:42 619
原创 Datawhale AI夏令营:基于预训练的EfficientNet_b0模型的Deepfake图片识别
在深度学习中,模型训练通常需要进行多次迭代,而不是单次完成。深度学习模型的训练本质上是一个优化问题,目标是最小化损失函数。梯度下降算法通过计算损失函数相对于模型参数的梯度来更新参数。由于每次参数更新只能基于一个数据批次来计算梯度,因此需要多次迭代,每次处理一个新的数据批次,以确保模型在整个数据集上都能得到优化。设置训练模式:通过调用model.train()将模型设置为训练模式。在训练模式下,模型的某些层(如BatchNorm和Dropout)会按照它们在训练期间应有的方式运行。遍历数据加载器。
2024-07-17 23:50:13 765
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人