Datawhale AI夏令营:基于预训练的EfficientNet_b0模型的Deepfake图片识别

1.Deepfake

        Deepfake是一种使用人工智能技术生成的伪造媒体,特别是视频和音频,它们看起来或听起来非常真实,但实际上是由计算机生成的。这种技术通常涉及到深度学习算法,特别是生成对抗网络(GANs),它们能够学习真实数据的特征,并生成新的、逼真的数据。

2.深度学习与Deepfake

        深度学习是一种强大的机器学习技术,它通过模拟人脑处理信息的方式,使计算机能够从大量数据中自动学习和识别模式。深度学习模型,尤其是卷积神经网络(CNN),能够识别图像和视频中的复杂特征。在Deepfake检测中,模型可以学习识别伪造内容中可能存在的微妙异常。

        为了训练有效的Deepfake检测模型,需要构建包含各种Deepfake和真实样本的数据集(本次比赛的数据集就是按照这种方式进行组织)。深度学习模型通过这些数据集学习区分真假内容。

3.关键代码实现

3.1加载预训练模型EfficientNet_b0

        预训练模型是指在特定的大型数据集(如ImageNet)上预先训练好的神经网络模型。这些模型已经学习到了丰富的特征表示,能够识别和处理图像中的多种模式。使用预训练模型的好处是,它们可以在新数据集或新任务上进行微调(Fine-tuning),从而加快训练过程并提高模型性能,尤其是当可用的数据量有限时。

        EfficientNet是一种高效的卷积神经网络(CNN)架构,它通过一种新颖的网络缩放方法来提升模型的性能和效率。EfficientNet 的核心是其 compound scaling 方法,该方法通过一个复合系数统一缩放网络的深度、宽度和分辨率。在过去,网络缩放通常是通过任意选择深度、宽度或分辨率的增加来实现的,而EfficientNet的方法则是通过一系列固定的缩放系数来同时增加这三个维度。例如,如果想要使用更多的计算资源,可以通过增加网络深度、宽度和图像大小的特定比例来实现,其中的比例系数是通过在小型模型上进行小规模的网格搜索确定的。

      

        EfficientNet的复合缩放方法的直觉在于,如果输入图像更大,网络就需要更多的层来增加感受野,以及更多的通道来捕捉更细粒度的模式。EfficientNet的架构本质上并不复杂。基本的EfficientNet-B0网络作为后续缩放的基础。作者指出,他们使用NAS来构建基本网络,利用了多目标搜索来同时优化网络的准确性和计算效率。

        在下面代码中,timm.create_model('efficientnet_b0', pretrained=True, num_classes=2, pretrained_cfg_overlay=dict(file='./checkpoints/efficientnet_b0/pytorch_model.bin'))这行代码就是加载了一个预训练的efficientnet_b0模型,其中pretrained=True表示使用在ImageNet数据集上预训练的权重,num_classes=2表示模型的输出层被修改为有2个类别的输出,以适应二分类任务(例如区分真实和Deepfake图像)。通过model = model.cuda()将模型移动到GPU上进行加速。

model = timm.create_model('efficientnet_b0', pretrained=True, num_classes=2, pretrained_cfg_overlay=dict(file='./checkpoints/efficientnet_b0/pytorch_model.bin'))
model = model.cuda()

3.2定义模型训练步骤

        在深度学习中,模型训练通常需要进行多次迭代,而不是单次完成。深度学习模型的训练本质上是一个优化问题,目标是最小化损失函数。梯度下降算法通过计算损失函数相对于模型参数的梯度来更新参数。由于每次参数更新只能基于一个数据批次来计算梯度,因此需要多次迭代,每次处理一个新的数据批次,以确保模型在整个数据集上都能得到优化。

模型训练的流程如下:

  1. 设置训练模式:通过调用model.train()将模型设置为训练模式。在训练模式下,模型的某些层(如BatchNormDropout)会按照它们在训练期间应有的方式运行。

  2. 遍历数据加载器:使用enumerate(train_loader)遍历train_loader提供的数据批次。input是批次中的图像数据,target是对应的标签。

  3. 数据移动到GPU:通过.cuda(non_blocking=True)将数据和标签移动到GPU上。non_blocking参数设置为True意味着如果数据正在被复制到GPU,此操作会立即返回,不会等待数据传输完成。

  4. 前向传播:通过output = model(input)进行前向传播,计算模型对输入数据的预测。

  5. 计算损失:使用损失函数loss = criterion(output, target)计算预测输出和目标标签之间的差异。

  6. 梯度归零:在每次迭代开始前,通过optimizer.zero_grad()清空(重置)之前的梯度,以防止梯度累积。

  7. 反向传播:调用loss.backward()计算损失相对于模型参数的梯度。

  8. 参数更新:通过optimizer.step()根据计算得到的梯度更新模型的参数。

    def train(train_loader, model, criterion, optimizer, epoch):
        batch_time = AverageMeter('Time', ':6.3f')
        losses = AverageMeter('Loss', ':.6f')
        top1 = AverageMeter('Acc@1', ':6.2f')
        progress = ProgressMeter(len(train_loader), batch_time, losses, top1)
    
        # switch to train mode
        model.train()
    
        end = time.time()
        for i, (input, target) in enumerate(train_loader):
            input = input.cuda(non_blocking=True)
            target = target.cuda(non_blocking=True)
    
            # compute output
            output = model(input)
            loss = criterion(output, target)
    
            # measure accuracy and record loss
            losses.update(loss.item(), input.size(0))
    
            acc = (output.argmax(1).view(-1) == target.float().view(-1)).float().mean() * 100
            top1.update(acc, input.size(0))
    
            # compute gradient and do SGD step
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
    
            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()
    
            if i % 100 == 0:
                progress.pr2int(i)

3.3数据集增强

        数据增强是一种在机器学习和深度学习中提升模型性能的重要技术。它通过应用一系列随机变换来增加训练数据的多样性,从而提高模型的泛化能力。增加数据多样性是数据增强的核心目的。通过对原始图像进行如旋转、缩放、翻转等操作,可以生成新的训练样本,使模型学习到更丰富的特征表示。

transforms.Compose: 这是一个转换操作的组合,它将多个图像预处理步骤串联起来:

  • transforms.Resize((256, 256)):将所有图像调整为256x256像素的大小。

  • transforms.RandomHorizontalFlip():随机水平翻转图像。

  • transforms.RandomVerticalFlip():随机垂直翻转图像。

  • transforms.ToTensor():将PIL图像或Numpy数组转换为torch.FloatTensor类型,并除以255以将像素值范围从[0, 255]缩放到[0, 1]。

  • transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]):对图像进行标准化,使用ImageNet数据集的均值和标准差。

    train_loader = torch.utils.data.DataLoader(
        FFDIDataset(train_label['path'], train_label['target'],
                transforms.Compose([
                            transforms.Resize((256, 256)),
                            transforms.RandomHorizontalFlip(),
                            transforms.RandomVerticalFlip(),
                            transforms.ToTensor(),
                            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
            ])
        ), batch_size=bs_value, shuffle=True, num_workers=4, pin_memory=True
    )

4.Submit

        训练模型时,设置参数bs_value=64,epoch_num=10,最终将submit.csv文件提交得到0.9937的分数。

5.后续提分计划

  • 尝试在EfficientNet_b0上做Fine-tuning
  • 尝试EfficientNet其他版本的预训练模型
  • 尝试其他不同的预训练模型
  • 对数据集做进一步的增强
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值