地道战是在抗日战争时期,在华北平原上抗日军民利用地道打击日本侵略者的作战方式。地道网是房连房、街连街、村连村的地下工事,如下图所示。
我们在回顾前辈们艰苦卓绝的战争生活的同时,真心钦佩他们的聪明才智。在现在和平发展的年代,对多数人来说,探索地下通道或许只是一种娱乐或者益智的游戏。本实验案例以探索地下通道迷宫作为内容。
假设有一个地下通道迷宫,它的通道都是直的,而通道所有交叉点(包括通道的端点)上都有一盏灯和一个开关。请问你如何从某个起点开始在迷宫中点亮所有的灯并回到起点?
输入格式:
输入第一行给出三个正整数,分别表示地下迷宫的节点数N(1<N≤1000,表示通道所有交叉点和端点)、边数M(≤3000,表示通道数)和探索起始节点编号S(节点从1到N编号)。随后的M行对应M条边(通道),每行给出一对正整数,分别是该条边直接连通的两个节点的编号。
输出格式:
若可以点亮所有节点的灯,则输出从S开始并以S结束的包含所有节点的序列,序列中相邻的节点一定有边(通道);否则虽然不能点亮所有节点的灯,但还是输出点亮部分灯的节点序列,最后输出0,此时表示迷宫不是连通图。
由于深度优先遍历的节点序列是不唯一的,为了使得输出具有唯一的结果,我们约定以节点小编号优先的次序访问(点灯)。在点亮所有可以点亮的灯后,以原路返回的方式回到起点。
输入样例1:
6 8 1
1 2
2 3
3 4
4 5
5 6
6 4
3 6
1 5
输出样例1:
1 2 3 4 5 6 5 4 3 2 1
输入样例2:
6 6 6
1 2
1 3
2 3
5 4
6 5
6 4
输出样例2:
6 4 5 4 6 0
代码:
#include<iostream>
#include<vector>
#include<stack>
using namespace std;
int N,M,S;
vector<vector<int>> edge(1002,vector<int>(1002));
vector<int> visit(1002);
int kg=0;
void DFS(int x)
{
if(kg)
cout<<" ";
cout<<x;
kg++;
for(int i=1;i<=N;i++)
{
if(!visit[i]&&edge[x][i])
{
visit[i]=1;
DFS(i);
cout<<" "<<x;
}
}
}
int main()
{
cin>>N>>M>>S;
for(int i=1;i<=M;i++)
{
int x,y;
cin>>x>>y;
edge[x][y]=edge[y][x]=1;
}
visit[S]=1; //从S开始访问
DFS(S);
for(int i=1;i<=N;i++)
{
if(visit[i]==0)
{
cout<<" "<<0;
break;
}
}
return 0;
}