(17)时间序列预测之Crossformer(跨时间+跨变量)

md,其他论文多学学这篇论文,写的多规整


文章信息

  1. 模型: Crossformer
  2. 关键词:分段;跨时间;跨变量
  3. 作者:Yunhao Zhang, Junchi Yan
  4. 机构: 上海交通大学
  5. 发表情况:ICLR 2023 notable top 5%
  6. 网址:Crossformer: Transformer Utilizing Cross-Dimension Dependency for Multivariate Time Series Forecasting

前言

  Crossformer的主要思想:数据分段将输入序列转变为二维向量数组;使用两阶段注意力层来高效地捕获跨变量和跨时间的依赖关系;采用分层编码器-解码器结构,在不同层次(尺度)上利用信息进行预测。

在本文中,跨维度(cross-dimension)指的是跨变量


一、网络结构

1. Dimension-Segment-Wise (DSW) embedding

可视化对比(分割的作用)

在这里插入图片描述
  图(a)中,我们可以看到,注意力值有分割的趋势,即相近的数据点具有相似的注意力权重。图(b)显示的是先前的Transformer未显式建模跨变量依赖关系且计算的是逐点的注意力,而一个时间步只能提供少量的信息。
  基于以上两点,作者认为嵌入向量应该表示单个维度序列段(图1 (c)),而不是在单个时间步中所有维度的值(图1 (b))

实现

  分段的公式如下:
在这里插入图片描述

其中嵌入的输入为: x ∈ R T × D \mathbf{x}\in \mathbb{R}^{T \times D} xRT×D ,回望窗口为 T T T个时间步,变量个数为 D D D x i , d ( s ) ∈ R L s e g \mathbf{x}_{i, d}^{(s)} \in \mathbb{R}^{L_{s e g}} xi,d(s)RLseg 是第 d d d 个变量长度为 L seg  L_{\text {seg }} Lseg  的第 i i i 个分段。
  然后按照以下公式单独对每个变量( d d d)的每段( i i i)进行线性映射+位置编码:
h i , d = E x i , d ( s )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值