SCAU 数据结构 8586 括号匹配检验

Description
利用栈编写满足下列要求的括号匹配检验程序:假设表达式中允许包含两种括号:圆括号和方括号,其嵌套的顺序随意,即()或[([][])]等为正确的格式,[(]或([())或(()])均为不正确的格式。输入一个包含上述括号的表达式,检验括号是否配对。本题给出部分check()函数,要求将check()函数补充完整,并完成整个程序。

typedef char SElemType;
#include"malloc.h"
#include"stdio.h"
#include"math.h"
#include"stdlib.h" // exit()
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
typedef int Status; // Status是函数的类型,其值是函数结果状态代码,如OK等
#define STACK_INIT_SIZE 10 // 存储空间初始分配量
#define STACKINCREMENT 2 // 存储空间分配增量
struct SqStack
{
SElemType *base; // 在栈构造之前和销毁之后,base的值为NULL
SElemType *top; // 栈顶指针
int stacksize; // 当前已分配的存储空间,以元素为单位
}; // 顺序栈
Status InitStack(SqStack &S)
{
}

Status StackEmpty(SqStack S)
{

}
Status Push(SqStack &S,SElemType e)
{
}
Status Pop(SqStack &S,SElemType &e)
{
}
void check()
{ // 对于输入的任意一个字符串,检验括号是否配对
SqStack s;
SElemType ch[80],p,e;
if(InitStack(s)) // 初始化栈成功
{
//printf(“请输入表达式\n”);
_____________________;
p=ch;
while(*p) // 没到串尾
switch(*p)
{
case ‘(’:
case ‘[’:_______________________;
break; // 左括号入栈,且p++
case ‘)’:
case ‘]’:if(!StackEmpty(s)) // 栈不空
{
; // 弹出栈顶元素
if(*p==‘)’&&e!=‘(’||
&&
)
// 弹出的栈顶元素与
p不配对
{
printf(“isn’t matched pairs\n”);
exit(ERROR);
}
else
{
__________________________;
break; // 跳出switch语句
}
}
else // 栈空
{
printf(“lack of left parenthesis\n”);
exit(ERROR);
}
default: ______________________; // 其它字符不处理,指针向后移
}
if(StackEmpty(s)) // 字符串结束时栈空
printf(“matching\n”);
else
printf(“lack of right parenthesis\n”);
}
}
int main()
{
check();
}

输入格式
第一行:输入一个包含圆括号或方括号、不超过80个字符的表达式串。

输出格式
第一行:若输入表达式括号匹配,输出"matching"; 若不匹配,输出具体信息:“isn’t matched pairs”, 或"lack of left parenthesis"或"lack of right parenthesis"

输入样例
8*[3*(35-23)]

输出样例
matching

#include<stdio.h>
#include<math.h>
#include<stdlib.h> // exit()
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define STACK_INIT_SIZE 10 // 存储空间初始分配量
#define STACKINCREMENT 2 // 存储空间分配增量
typedef char SElemType;
typedef int Status; // Status是函数的类型,其值是函数结果状态代码,如OK等

struct SqStack
{
 SElemType *base; // 在栈构造之前和销毁之后,base的值为NULL
 SElemType *top; // 栈顶指针
 int stacksize; // 当前已分配的存储空间,以元素为单位
 }; // 顺序栈

Status InitStack(SqStack &S)
{
    S.base =(SElemType*)malloc(STACK_INIT_SIZE *sizeof(SElemType));
    if(!S.base ) return FALSE;
    S.top =S.base ;
    S.stacksize =STACK_INIT_SIZE;
    return OK;
}

Status StackEmpty(SqStack S)
{
    if(S.base ==S.top ) return 1;
    else return 0;
 }

Status Push(SqStack &S,SElemType e)
{
    if(S.top -S.base >=S.stacksize  )
    {
        S.base =(SElemType*)realloc(S.base ,(S.stacksize +STACKINCREMENT)*sizeof(SElemType));
        if(!S.base )  return FALSE;
        S.top =S.base +S.stacksize ;
        S.stacksize +=STACKINCREMENT;
    }
    *(S.top )=e;
    S.top ++;
    return OK;


 }
 Status Pop(SqStack &S,SElemType &e)
{
    if(S.base ==S.top )
    return FALSE;
    --S.top ;
    e=*(S.top );
    return OK;

 }
void check()
 {
    // 对于输入的任意一个字符串,检验括号是否配对
   SqStack s;
   SElemType ch[80],*p,e;
   if(InitStack(s)) // 初始化栈成功
   {
    //printf("请输入表达式\n");
     gets(ch);
     p=ch;
     while(*p) // 没到串尾
       switch(*p)
       {
         case '(':
         case '[':Push(s,*p++);
                  break; // 左括号入栈,且p++
         case ')':
         case ']':if(!StackEmpty(s)) // 栈不空
                  {
                   Pop(s,e); // 弹出栈顶元素
                    if(*p==')'&&e!='('||*p==']'&&e!='[')
                                                // 弹出的栈顶元素与*p不配对
                    {
                      printf("isn't matched pairs\n");
                      exit(ERROR);
                    }
                    else
                    {
                        p++;
                        break; // 跳出switch语句
                    }
                  }
                  else // 栈空
                  {
                    printf("lack of left parenthesis\n");
                    exit(ERROR);
                  }
         default: p++;; // 其它字符不处理,指针向后移
       }
        if(StackEmpty(s)) //字符串结束时栈空
            printf("matching\n");
        else
            printf("lack of right parenthesis\n");
   }
 }
int main()
{
    check();
}

#include <iostream>
#include <stack>
#include <string.h>

using namespace std;

int main()
{
    stack<char> S;
    string ch;
    cin>>ch;
    for(int i=0; i<ch.size(); i++)
    {
        if(ch[i]=='('||ch[i]=='[')
        {
            S.push(ch[i]);
        }
        if(ch[i]==')'||ch[i]==']')
        {
            if(!S.empty())
            {
                char e=S.top();
                S.pop();
                if(ch[i]==')'&&e!='('||ch[i]==']'&&e!='[')
                {
                    cout<<"isn't matched pairs"<<endl;
                    return 0;
                }
            }
            else
            {
                cout<<"lack of left parenthesis"<<endl;
                return 0;
            }
        }
    }
    if(!S.empty())
    {
        cout<<"lack of right parenthesis"<<endl;
    }
    else
    {
        cout<<"matching"<<endl;
    }
    return 0;
}

问题描述:假设表达式中允许有两种括号:圆括号和方括号,其嵌套的顺序随意,即CC或[([ ] [ ])]等为正确格式,[( ))或((()均为不正确的格式。检验括号是否匹配的方法可用“期待的紧迫程度”这个概念来描述。例如:考虑下列的括号序列:    [ ( [ ] [ ] ) ]    1 2 3 4 5 6 7 8 当计算机接受了第1个括号以后,他期待着与其匹配的第8个括号的出现,然而等来的却是第2个括号,此时第1个括号“[”只能暂时靠边,而迫切等待与第2个括号相匹配的 第7个括号“]”的出现,类似的,因只等来了第3个括号“[”,此时,其期待的紧迫程度较第2个括号更紧迫,则第2个括号只能靠边,让位于第3个括号,显然第3个括号的期待紧迫程度高于第2个括号,而第2个括号的期待紧迫程度高于第1个括号;在接受了第4个括号之后,第3个括号的期待得到了满足,消解之后,第2个括号的期待匹配就成了最急迫的任务了,…… ,依次类推。可见这个处理过程正好和栈的特点相吻合。 要求:设置一个栈,每读入一个括号,若是左括号,则作为一个新的更急迫的期待压入栈中,若是右括号,则或者是和当前栈顶的括号相匹配,或者是不合法的情况,输出“此串括号匹配不合法”。在初始和结束时,栈应该是空的。 测试数据:输入 #([ ]())#,结果“匹配”  输入 #[( )]#,结果“此串括号匹配不合法”  #为起始和结束标志。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值