目录
一、题目介绍
这道题的题目介绍比较简单,在我刚开始学习C语言时,学校的oj就有这道类似的题目,当时的思路,到现在来看是十分的烂,因为我当时是一个一个的将元素向后移动,时间复杂度简直是突破天际,好在学校的oj没有什么变态的样例
下面来介绍简便的算法来解决这道题
所谓的轮转数组,我们其实可以发现一些规律,
该方法基于如下的事实:当我们将数组的元素向右移动 kk 次后,尾部 k\bmod nkmodn 个元素会移动至数组头部,其余元素向后移动 k\bmod nkmodn 个位置。
该方法为数组的翻转:我们可以先将所有元素翻转,这样尾部的 k\bmod nkmodn 个元素就被移至数组头部,然后我们再翻转 [0, k\bmod n-1][0,kmodn−1] 区间的元素和 [k\bmod n, n-1][kmodn,n−1] 区间的元素即能得到最后的答案。
我们就以题目的实例1来举例
我们先整体翻转数组
K=3,我们先将前K个元素翻转
在将后面的元素翻转
这时就得到了我们想要的结果了
这种算法十分的巧妙地将一个数组翻转了
二、代码实现
void swap(int* a, int* b) {
int t = *a;
*a = *b, *b = t;
}
void reverse(int* nums, int start, int end) {
while (start < end) {
swap(&nums[start], &nums[end]);
start += 1;
end -= 1;
}
}
void rotate(int* nums, int numsSize, int k) {
k %= numsSize;
reverse(nums, 0, numsSize - 1);
reverse(nums, 0, k - 1);
reverse(nums, k, numsSize - 1);
}