TZOJ 4954:矩阵游戏

题目描述:

婷婷是个喜欢矩阵的小朋友,有一天她想用电脑生成一个巨大的 nm 列的矩阵(你不用担心她如何存储)。她生成的这个矩阵满足一个神奇的性质:若用 F[i][j] 来表示矩阵中第i行第j列的元素,则 F[i][j] 满足下面的递推式:


F[1][1]=1
F[i,j] = a * F[ i ][ j-1 ] + b ( j!=1 )
F[i,1] = c * F[ i-1 ][ m ] + d ( i!=1 )

递推式中 a,b,c,d 都是给定的常数。

现在婷婷想知道 F[n][m] 的值是多少,请你帮助她。由于最终结果可能很大,你只需要输出 F[n][m]除以 1,000,000,007 的余数。

 

输入:

一行有六个整数 n,m,a,b,c,d。意义如题所述。

1 <=N,M<=10^1000 000   a<=a,b,c,d<=10^9

输出:

包含一个整数,表示 F[n][m] 除以1,000,000,007的余数

样例输入:

3 4 1 3 2 6

样例输出:

85

提示:

样例中的矩阵为:

    1     4    7   10
    26  29  32  35
    76  79  82  85


题意解析:

由题目中的第一个表达式 F[i,j] = a * F[ i ][ j-1 ] + b ( j!=1 ) 可以轻易推出矩阵中每一行的递推关系

而第二个表达式也可以推出每一行最后一项和下一行第一项之间的关系。

但是 n 和 m 巨大的数据范围(10^1000000)也意味着这题别想用暴力写了。

想要压缩时间,需要用到 矩阵乘法 + 快速幂

具体实现:

首先,假设一个初始二阶矩阵 A  \begin{bmatrix}1 & 1\\0 &0\end{bmatrix}  ,在每一行中,递推关系为 F[i+1] = F[i]*a+b,相当于乘一个矩阵 B \begin{bmatrix}a & 0\\b &1\end{bmatrix} , 则易得第一行的最后一项为 A*B^{m-1} 。

下一行的第一项相当于乘一个矩阵 C  \begin{bmatrix}c &0 \\d &1\end{bmatrix} ,则由第一项 F[1][1]推 F[n][m] 的表达式为:

A*B^{n*(m-1)}*C^{n-1}

可以化简为:A*(B^{m-1}*C)^{n-1}*B^{m-1} 。

此时,算法的复杂度为 O(\log_{2}{N} *\log_{2}{M} ) 。

由于 n 和 m 太大,还需要进一步优化。

将 n 和 m 取模,需要用到费马小定理,即  F(n,m) = F ( n%(mod-1) , m%(mod-1) )

(需要注意 a , c 等于1时,费马小定理不成立,需要特殊处理!!!)

AC代码:

#include<bits/stdc++.h>
#define mod 1000000007
#define ll long long int
using namespace std;
string N,M;
ll n,m,a,b,c,d;
ll A[2][2],B[2][2],C[2][2],D[2][2],DD[2][2];

ll mo(string s,int m)//取模函数 
{
    ll num=0;
    for (int i=0;i<s.size();i++)
	{
		num=(num*10+(s[i]-'0'))%m;
	}
    return num;
}

void mul(ll a[2][2],ll b[2][2])//矩阵乘法 
{
	ll res[2][2];
    for(int i=0;i<2;i++)
    {
    	for(int j=0;j<2;j++)
		{
	        res[i][j]=0;
	        for(int k=0;k<2;k++) res[i][j]=(res[i][j]+a[i][k]*b[k][j])%mod;
     	} 
	}
    for (int i=0;i<2;i++)
    {
    	for (int j=0;j<2;j++) a[i][j]=res[i][j];
	}
}
int main()
{
    cin >> N >> M;
    cin >> a >> b >> c >> d;
    if (a==1) n=mo(N,mod);
	else n=mo(N,mod-1);
    if (c==1) m=mo(M,mod);
	else m=mo(M,mod-1);//当 a 和 c 等于 1 时特殊处理 
	m--;
	n--;
    A[0][0]=1;
	A[0][1]=1;
	A[1][1]=0;
	A[1][0]=0;
    B[0][0]=a;
	B[1][0]=b;
	B[0][1]=0;
	B[1][1]=1;
    C[0][0]=c;
	C[1][0]=d;
	C[0][1]=0;
	C[1][1]=1;
    D[0][0]=D[1][1]=1;
	D[0][1]=D[1][0]=0;
    while(m)//快速幂
	{
        if (m&1) mul(D,B);
        mul(B,B);
		m>>=1;
    }
    DD[0][0]=D[0][0];
	DD[0][1]=D[0][1];
	DD[1][0]=D[1][0];
	DD[1][1]=D[1][1];
	mul(D,C);
    while(n)//快速幂 
	{
        if(n&1) mul(A,D);
        mul(D,D);
		n>>=1;
    }
    mul(A,DD);
    printf("%lld",A[0][0]);
    return 0;
}

总结:

这道题是一道数学题,主要运用了矩阵乘法,高精度算法,快速幂,以及数学中的费马小定理。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NsJhR

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值