深度学习第J4周:ResNet与DenseNet结合探索

目录

一、前期准备

1.1设置GPU

1.2导入数据集

1.3划分数据集

二、网络结构

2.1思路解析

2.2模型代码

 三、训练运行

3.1训练

 3.2指定图片进行预测


🍨 本文为[🔗365天深度学习训练营]内部限免文章(版权归 *K同学啊* 所有)
🍖 作者:[K同学啊]

 任务类型:自主探索
●任务难度:偏难
●任务描述:
○请根据J1~J3周的内容自由探索ResNet与DenseNet结合的可能性
○是否可以根据两种的特性构建一个新的模型框架?
○请用之前的任一图像识别任务验证改进后模型的效果

使用pytorch框架,还用前两周的数据集:百度网盘 请输入提取码(提取码:0mhm) 

一、前期准备

这部分与J2周内容基本一致:深度学习第J2周:ResNet50V2算法实战与解析_牛大了2022的博客-CSDN博客

1.1设置GPU

如果设备上支持GPU就使用GPU,否则使用CPU。尽量配置好GPU使用。

import os,PIL,random,pathlib
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

print(device)

1.2导入数据集

本地数据集位于./data/bird_photos/目录下。

data_dir = './data/bird_photos/'
data_dir = pathlib.Path(data_dir)
 
data_paths  = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[2] for path in data_paths]
print(classeNames)

image_count = len(list(data_dir.glob('*/*')))
print("图片总数为:",image_count)

 数据预处理一下,图形变换,输出:用到torchvision.transforms.Compose()类,有兴趣的朋友可以参考这篇博客:torchvision.transforms.Compose()详解【Pytorch手册】

train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    # transforms.RandomHorizontalFlip(), # 随机水平翻转
    transforms.ToTensor(),  # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(  # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
 
test_transform = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),  # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(  # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
 
total_data = datasets.ImageFolder("./data/bird_photos/", transform=train_transforms)
print(total_data.class_to_idx)

{'Bananaquit': 0, 'Black Skimmer': 1, 'Black Throated Bushtiti': 2, 'Cockatoo': 3}

1.3划分数据集

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])

batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=0)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=0)
for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

二、网络结构

2.1思路解析

通过网上查阅相关资料,发现了一个ResNet与DenseNet结合的网络框架DPN,第二部分实现这个DPN(Dual Path Networks)

Dual Path Networks(DPN)是通过High Order RNN(HORNN)将ResNet和DenseNet进行了融合,所谓的dual path,即一条path是ResNet,另一条path是DenseNet。相关论文的Motivation是通过对ResNet和DenseNet的分解,证明了ResNet更侧重于特征的复用,而DenseNet则更侧重于特征的生成,通过分析两个模型的优劣,将两个模型有针对性的组合起来,提出了DPN。

论文名称:NIPS-2017-dual-path-networks-Paper(谷粉学术上搜Dual Path Networks即可下载)

Dual Path Net:ResNet +DenseNet
DPN把ResNet和DenseNet的优点结合起来,给ResNet加上了薄薄的DenseNet结构,保持了二者复用特征+挖掘特征的能力,同时避免了像原始DenseNet那样臃肿的结构。

DPA的结构可以使用公式(7)到公式(10)来表示

上图1是ResNet, 图2 是DenseNet,变粗的部分就是新的网络层的特征,不断与之前的特征concate,注意有多个1x1卷积核。同一个颜色的卷积核代表的是同一个尺度的1x1卷积核,比如,绿色的1x1卷积核代表了是指对第一层的特征进行1x1卷积。而带下划线的1x1卷积核则是为了对concate后的特征进行维度上的整理。图3是对DenseNet的一个改动,假设所有相同颜色的1x1卷积核是共享的,那么图2就可以整理成为图3的格式。图3的左半部分是DenseNet,右半部分是ResNet。回忆在核心论点一中,提到concate是可以等价成为相加的,所以在图2中绿色1x1卷积核、桔色1x1卷积核分别对第一层特征、新特征处理后,再concate进行后面的操作,也就等价于图3中右边通道中二者相加。

图4是提出的DPN,一方面,这个网络结构可以直接从DPN的定义公式得到;另一方面,可以发现,只要把图3 里面的1x1卷积核拆分、整理、变形,也可以得到图4的结构。

上图最右边DPN结构把每个block中每个通道的第一个1x1卷积核合并的结果,和图4的最大不同在于ResNet和DenseNet共享了第一个 1×1 卷积。在实际计算 3×3 卷积时,使用了分组卷积来提升网络的性能。在设计网络的超参时,ResNet的通道数也比DenseNet的通道数多点,防止DenseNet随着层数的增加引发的显存消耗速度过快的问题。和其它网络一样,我们也可以通过堆叠网络块的方式来提升模型的容量。

效果对比:

网络参数

 分类效果对比

 

 检测与分割的效果

2.2模型代码

class Block(nn.Module):
    def __init__(self, in_channel, mid_channel, out_channel, dense_channel, stride, groups, is_shortcut=False):
        # in_channel,是输入通道数,mid_channel是中间经历的通道数,out_channels是经过一次板块之后的输出通道数。
        # dense_channels设置这个参数的原因就是一边进行着resnet方式的卷积运算,另一边也同时进行着dense的卷积计算,之后特征图融合形成新的特征图
        super().__init__()
        self.is_shortcut = is_shortcut
        self.out_channel = out_channel
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channel, mid_channel, kernel_size=1, bias=False),
            nn.BatchNorm2d(mid_channel),
            nn.ReLU()
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(mid_channel, mid_channel, kernel_size=3, stride=stride, padding=1, groups=groups, bias=False),
            nn.BatchNorm2d(mid_channel),
            nn.ReLU()
        )
        self.conv3 = nn.Sequential(
            nn.Conv2d(mid_channel, out_channel+dense_channel, kernel_size=1, bias=False),
            nn.BatchNorm2d(out_channel+dense_channel)
        )
        if self.is_shortcut:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_channel, out_channel+dense_channel, kernel_size=3, padding=1, stride=stride, bias=False),
                nn.BatchNorm2d(out_channel+dense_channel)
            )
        self.relu = nn.ReLU(inplace=True)
    
    def forward(self, x):
        a = x
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        if self.is_shortcut:
            a = self.shortcut(a)
        d = self.out_channel
        x = torch.cat([a[:,:d,:,:] + x[:,:d,:,:], a[:,d:,:,:], x[:,d:,:,:]], dim=1)
        x = self.relu(x)
        return x


class DPN(nn.Module):
    def __init__(self, cfg):
        super(DPN, self).__init__()
        self.group = cfg['group']
        self.in_channel = cfg['in_channel']
        mid_channels = cfg['mid_channels']
        out_channels = cfg['out_channels']
        dense_channels = cfg['dense_channels']
        num = cfg['num']
        self.conv1 = nn.Sequential(
            nn.Conv2d(3, self.in_channel, 7, stride=2, padding=3, bias=False, padding_mode='zeros'),
            nn.BatchNorm2d(self.in_channel),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=0)
        )
        self.conv2 = self._make_layers(mid_channels[0], out_channels[0], dense_channels[0], num[0], stride=1)
        self.conv3 = self._make_layers(mid_channels[1], out_channels[1], dense_channels[1], num[1], stride=2)
        self.conv4 = self._make_layers(mid_channels[2], out_channels[2], dense_channels[2], num[2], stride=2)
        self.conv5 = self._make_layers(mid_channels[3], out_channels[3], dense_channels[3], num[3], stride=2)
        self.pool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(cfg['out_channels'][3] + (num[3]+1) * cfg['dense_channels'][3], cfg['classes']) # fc层需要计算
    
    def _make_layers(self, mid_channel, out_channel, dense_channel, num, stride=2):
        layers = []
        layers.append(Block(self.in_channel, mid_channel, out_channel, dense_channel, stride=stride, groups=self.group, is_shortcut=True))
        # block_1里面is_shortcut=True就是resnet中的shortcut连接,将浅层的特征进行一次卷积之后与进行三次卷积的特征图相加
        # 后面几次相同的板块is_shortcut=False简单的理解就是一个多次重复的板块,第一次利用就可以满足浅层特征的利用,后面重复的不在需要
        self.in_channel = out_channel + dense_channel*2
        # 由于里面包含dense这种一直在叠加的特征图计算,
        # 所以第一次是2倍的dense_channel,后面每次一都会多出1倍,所以有(i+2)*dense_channel
        for i in range(1, num):
            layers.append(Block(self.in_channel, mid_channel, out_channel, dense_channel, stride=1, groups=self.group))
            self.in_channel = self.in_channel + dense_channel
            #self.in_channel = out_channel + (i+2)*dense_channel
        return nn.Sequential(*layers)
    
    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x = self.conv4(x)
        x = self.conv5(x)
        x = self.pool(x)
        x = torch.flatten(x, start_dim=1)
        x = self.fc(x)
        return x


def DPN92(n_class=10):
    cfg = {
        'group': 32,
        'in_channel': 64,
        'mid_channels': (96, 192, 384, 768),
        'out_channels': (256, 512, 1024, 2048),
        'dense_channels': (16, 32, 24, 128),
        'num': (3, 4, 20, 3),
        'classes': (n_class)
    }
    return DPN(cfg)


def DPN98(n_class=10):
    cfg = {
        'group': 40,
        'in_channel': 96,
        'mid_channels': (160, 320, 640, 1280),
        'out_channels': (256, 512, 1024, 2048),
        'dense_channels': (16, 32, 32, 128),
        'num': (3, 6, 20, 3),
        'classes': (n_class)
    }
    return DPN(cfg)

打印模型

x = torch.randn(2, 3, 224, 224)
model = DPN98(4)
model.to(device)
import torchsummary as summary
summary.summary(model, (3, 224, 224))

 三、训练运行

3.1训练

代码和以前的差不多,不再细说


# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)  # 批次数目, (size/batch_size,向上取整)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率

    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)

        # 计算预测误差
        pred = model(X)  # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失

        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()  # 反向传播
        optimizer.step()  # 每一步自动更新

        # 记录acc与loss
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()

    train_acc /= size
    train_loss /= num_batches

    return train_acc, train_loss


def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)  # 批次数目
    test_loss, test_acc = 0, 0

    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)

            # 计算loss
            target_pred = model(imgs)
            loss = loss_fn(target_pred, target)

            test_loss += loss.item()
            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc /= size
    test_loss /= num_batches

    return test_acc, test_loss

 跑十轮并保存模型


import copy

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
loss_fn = nn.CrossEntropyLoss()  # 创建损失函数

epochs = 10

train_loss = []
train_acc = []
test_loss = []
test_acc = []

best_acc = 0  # 设置一个最佳准确率,作为最佳模型的判别指标

for epoch in range(epochs):
    # 更新学习率(使用自定义学习率时使用)
    # adjust_learning_rate(optimizer, epoch, learn_rate)

    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    # scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)

    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)

    # 保存最佳模型到 best_model
    if epoch_test_acc > best_acc:
        best_acc = epoch_test_acc
        best_model = copy.deepcopy(model)

    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)

    # 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']

    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss,
                          epoch_test_acc * 100, epoch_test_loss, lr))

# 保存最佳模型到文件中
PATH = './best_model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)

print('Done')

可以打印训练记录图

import matplotlib.pyplot as plt
# 隐藏警告
import warnings

warnings.filterwarnings("ignore")  # 忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100  # 分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

有个报错:RuntimeError: CUDA out of memory. Tried to allocate 54.00 MiB (GPU 0; 4.00 G。原因是我的显卡太lj了(3050ti),GPU算力不够,被迫把batchsize从32调低为4了

运行训练 

 3.2指定图片进行预测

把训练部分注释掉


from PIL import Image

classes = list(total_data.class_to_idx)


from PIL import Image

classes = list(total_data.class_to_idx)


def predict_one_image(image_path, model, transform, classes):
    test_img = Image.open(image_path).convert('RGB')
    plt.imshow(test_img)  # 展示预测的图片

    test_img = transform(test_img)
    img = test_img.to(device).unsqueeze(0)

    model.eval()
    output = model(img)

    _, pred = torch.max(output, 1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}')

# 预测训练集中的某张照片
predict_one_image(image_path='./data/bird_photos/Cockatoo/011.jpg',
                  model=model,
                  transform=train_transforms,
                  classes=classes)

  • 3
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
特征提取网络是计算机视觉领域中的一个重要概念,用于从图像或视频中提取出有用的特征信息,以便后续的目标检测、图像分类、语义分割等任务。近年来,一些常用的网络结构已经被广泛应用于特征提取,其中包括ResNetDenseNet、PCB、EfficientNet、HRnet、Swin和ConvNeXt等。 ResNet是一种非常经典的深度残差网络,其核心思想是通过残差连接来解决深度网络中的梯度消失问题,从而让网络更容易训练。DenseNet则是一种密集连接网络,旨在通过连接所有层的特征图来提高特征复用效率,从而提高网络的性能。 PCB是一种基于分支网络的人体姿态估计网络,其特点是将图像分成多个部分并分别提取特征,从而提高人体姿态估计的准确性。EfficientNet是一种高效的卷积神经网络结构,旨在通过自动调整网络深度、宽度和分辨率等参数来提高网络的性能。 HRnet是一种高分辨率网络,其核心思想是通过并行多个分辨率的特征提取网络来提高网络的性能。Swin则是一种基于窗口机制的图像分类网络,其特点是在不同尺度上使用不同大小的窗口来提取特征,从而提高网络的性能。ConvNeXt则是一种通过组合多个卷积核来提高网络性能的网络结构。 总的来说,特征提取网络是计算机视觉领域中非常重要的一部分,近年来不断有新的网络结构被提出,带来了更加出色的性能和更高的效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

牛大了2023

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值