自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(27)
  • 收藏
  • 关注

原创 Webstorm的下载与安装

在浏览器的地址栏输入https://www.jetbrains.com/webstorm/

2024-08-07 20:35:03 292

原创 Excel公式与函数(运算符,计算限制,错误检查)(一)

是以“=”号为引导,用过运算符按照一定的顺序组合进行数据运算处理的等式,则是按特定算法执行计算的产生一个或一组结果的预定义的特殊公式。

2024-08-02 10:26:53 518

原创 Excel2010数字格式使用

在【单元格格式】对话框【数字】选项卡的【分类】列表中选中某个格式分类,并在右侧出现的选项卡中选择好相应的格式类型,然后在【分类】列表中单击【自定义】,即可在右侧的【类型】文本框中查看刚才所选择格式对应的代码。

2024-07-31 10:44:49 362

原创 window10---Pycharm安装教程+python环境配置

文章目录Pycharm安装教程+python环境配置Pycharm安装教程python环境配置环境变量配置Pycharm安装教程+python环境配置Pycharm安装教程最新版的pycharm安装教程,首先在pycharm官网下载安装包网址链接,在网站中可以看到如下图,我下载的是window然后选择Community,还有macOS和Linux版本,可以根据自己需求安装。这里,选择Next即可然后会弹出安装地址,自己选择安装位置即可。这里左上第一个是创建桌面快捷方式,左二是添加“打开文

2021-09-20 11:40:06 917

原创 Ordinal Regression with Multiple Output CNN for Age Estimation-(系列一_年龄估计)

文章目录Ordinal Regression with Multiple Output CNN for Age EstimationOrdinal Regression with Multiple Output CNN for Age Estimation

2021-06-28 20:46:26 1031 1

原创 年龄估计入门必备:Age and Gender Classification using Convolutional Neural Networks

文章目录Age and Gender Classification using Convolutional Neural Networks介绍研究动机Age and Gender Classification using Convolutional Neural Networks介绍研究动机在本文中,作者试图缩小自动面部识别能力和年龄性别估计方法之间的差距。...

2021-06-26 10:47:41 807

原创 爱恨交加的EfficientNet(复合缩放方法)

文章目录EfficientNet : Rethinking Model Scaling for Convolutional Neural Networks简介网络(复合模型拓展)问题阐述实验结果EfficientNet : Rethinking Model Scaling for Convolutional Neural Networks简介从题目中不难看出,本文从模型扩展(Model Scaling)的方向对CNN网络进行分析。过去几年中有着不少模型扩展的例子,ResNet(2016)可以对模型深度

2021-05-14 16:19:32 823

原创 Ubuntu pycharm中导入conda包

文章目录PackagesNotFoundError: The following packages are not available from current channels解决办法PackagesNotFoundError: The following packages are not available from current channels解决办法在pycharm导入dlib库时,遇到了packagesNotFoundError然后根据错误提示,在conda官网提示,搜索你所需要的包,

2021-05-06 09:26:51 239

原创 残差网络的发展路Resnet+ResNext+Densenet+DPN

文章目录ResNet网络图代码实验结果ResNeXt网络图代码实验结果DenseNet网络图代码实验结果Dual Path Networks网络图代码实验结果ResNetResNet是著名的神经网络,网络中的残差块更是广为人知,如下图,残差块的公式为y=F(x)+xy=F(x)+xy=F(x)+x,xxx为输入,F(x)F(x)F(x)代表的则是卷积操作。网络图残差块两种主要模块如下图:左边的是浅层Resnet架构,右边的深层Resnet架构,11层负责先降维和升维(考虑到训练时间),这样33层的

2021-05-05 16:19:51 1412

原创 一文看懂MobileNet

文章目录MobileNet框架深度可分离卷积论文链接代码链接MobileNet框架深度可分离卷积传统卷积操作是在卷积的过程中既进行卷积操作,同时将输入组合成新的输出。深度可分离卷积将这一步骤分成两步。如下图2.(a)就是一个标准卷积操作,分解成图2.(b)中的深度卷积和图2.©的1*1卷积。为什么要分离呢?为了降低计算成本。首先,标准卷积输入DF∗DF∗M(input),DFD_F*D_F*M(input),D_FDF​∗DF​∗M(input),DF​是输入特征图宽度和高度,MMM是输入

2021-04-21 19:48:13 369

原创 (Pytorch)向量简单操作

文章目录Pytorch学习向量创建随机向量创建零向量创建单位向量:numpy数组创建向量向量拼接向量分块向量转置矩阵点乘矩阵乘法后续待更新Pytorch学习向量创建随机向量randn()、is_tensor()、is_storage、size()、numel()import torch as Ty = T.randn(1, 2, 3)print(y)# is_tensor判断是否为pytorch张量print(T.is_tensor(y))# is_storage判断是否为pytorc

2021-04-13 11:44:47 1266

原创 ShuffleNet=CNN+组卷积+channel shuffle+模型加速

文章目录ShuffleNetShuffleNet Unit网络结构实验结果ResNet网络图网络结构实验结果ResNeXt网络图网络结构实验结果ShuffleNetShuffleNet=CNN+组卷积+channel shuffle+模型加速ShuffleNet UnitShuffleNet和ResNet、ResNeXt相比。在相同的设置下,例如,给定输入的大小为c∗h∗wc*h*wc∗h∗w,通道数为m,ResNet需要hw(2cm+9m2)FLOPshw(2cm+9m^2)FLOPshw(2c

2021-04-12 14:35:46 371

原创 LAAE(SE-ResNet-50+DAGSVM)

文章目录论文阅读《Combined Deep Learning With Directed Acyclic Graph SVM for Local Adjustment of Age Estimation》摘要网络图论文阅读《Combined Deep Learning With Directed Acyclic Graph SVM for Local Adjustment of Age Estimation》摘要本文提出了一种基于深度学习和有向无环图SVM的局部调整年龄估计算法。网络图主要思想如

2021-03-26 19:30:02 883

原创 Python Numpy函数库基础(pycharm)

文章目录Python Numpy函数库基础(pycharm)前言构造一个4*4随机数组array调用mat()函数可以将数组转化成矩阵matrix矩阵的求逆的运算矩阵乘法单位矩阵计算机处理误差总结Python Numpy函数库基础(pycharm)前言机器学习算法中涉及很多线性代数的知识,下面是一些简单的矩阵运算。构造一个4*4随机数组arrayimport numpy as npa = np.random.rand(4, 4)print(a)# [[0.76363807 0.1180820

2021-02-03 16:40:56 696

原创 如何快速安装Pycharm最新版本-详细教程

如何快速安装Pycharm最新版本-详细教程下载https://www.jetbrains.com/pycharm/download/#section=windowswindows10 下载Community安装步骤1.选择next2.如图,点击next3.点击install出现如下4.等待一下5.结果如下...

2021-02-03 15:02:21 303

原创 一文搞懂CBAM(通道+空间注意机制)

attention机制论文阅读《CBAM : Convolutional Block Attention Module》CBAM先上网络图。简单说明一下,该结构由两个顺序子模块:通道模块和空间模块。特征图在每个深度网络的每个卷积块上自适应调整。由上图所示,有输入、通道注意力模块、空间注意力模块和输出组成。输入特征F∈RC∗H∗WF\in R^{C*H*W}F∈RC∗H∗W,然后通道注意力模块一维卷积${M_c}R^{C11} $,...

2021-02-01 20:48:52 5137

原创 数据增强(二、GridMask)

GridMask(2020)论文链接代码链接GridMask给定一幅图像,随机的移除一个不连续的像素集合。输入图像x∈RH∗W∗Cx\in R^{H*W*C}x∈RH∗W∗C,M∈{0,1}H∗WM \in \{0,1\}^{H*W}M∈{0,1}H∗W为待除去像素的二进制掩码(M=1M=1M=1则保留像素,否则移除该像素),x~\tilde{x}x~为结果。(r,d,δx,δy)(r,d,\delta_x,\delta_y)(r,d,δx​,δy​)表示一个MMM块,每个遮挡都是通过如图

2021-01-22 17:00:25 1426

原创 Ubuntu-做window U盘启动盘(重装系统)

Ubuntu 20.04 制作 window 10 U盘启动盘window10镜像

2021-01-21 15:58:08 1613

原创 数据增强(一、Random-Erasing)

Random Erasing Data Augmentation(随机擦除数据增强)优势一种轻量级方法,不需要任何额外的参数或内存消耗,它可以在不改变学习策略的情况下与各种CNN模型集成对于现有的数据增强和正则化方法的补充。两者结合使用,Random Erasing进一步提高了识别性能。在图像分类、目标检测和行人重识别方面,提高了深度模型的性能提高鲁棒性。实验数据集图像分类CIFAR-10包含10个类的50000个训练图像和10000个测试图像(3232彩色图像).CIFAR-100包

2021-01-17 17:14:06 3367 3

原创 简述ECA-NET代码(pytorch)

ECA-NET代码学习(pytorch)ECA_module文中注释部分import torchfrom torch import nnfrom torch.nn.parameter import Parameter# ECA模块class eca_layer(nn.Module): """Constructs a ECA module. Args: channel: Number of channels of the input feature map

2021-01-12 15:34:10 8556 13

原创 轻量模块注意力机制ECA-Net(注意力模块+一维卷积)

ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks(2020)注意力模块比较纵坐标为准确性,横坐标为模型参数量(复杂度)。ECA模块Avoiding Dimensionaluity ReductionSE-Net在SE-Net中,通道注意力模块通过公式(2)进行降维(简单来说,就是SE-Net模块中的全连接层),这样让通道和权值之间没有直接联系。下表中的SE-Var1(无参数)、SE-Va

2021-01-08 17:05:33 25813 7

原创 Squeeze-and-Excitation Networks(SENet:GAP+2个FC)通道注意力模型公式解析

Squeeze-and-Excitation NetworksSENet:通道注意力机制1.卷积操作:Ftr:X∈RH′∗W′∗C′→U∈RH∗W∗CF_{tr}:X\in R^{H'*W'*C'} \to U\in R^{H*W*C}Ftr​:X∈RH′∗W′∗C′→U∈RH∗W∗C,V=[v1,v2,……,vc]V=[v_1,v_2,……,v_c]V=[v1​,v2​,……,vc​]表示卷积核学习到的一组参数。2.Squeeze:(全局信息嵌入)每个卷积核都与一个区域相关联,但是每个卷积核没有

2021-01-07 17:02:58 1809

原创 Deep label refinement for age estimation(知识蒸馏+标签学习在年龄估计中的应用)

Deep label refinement for age estimation研究问题1.不同性别/种族的人类年龄差异不同2.面部图像中光照、姿势、表情、化妆会影响年龄估计的精度3.模型的泛化能力,很难获得准确的真实年龄标签分布学习可以解决不同年龄之间的相关性和不确定性,提高数据的利用率。Label distribution refineryThe initial ancestor标签分布学习的初始网络Rθ1R_{\theta_1}Rθ1​​的目标是最小化交叉熵损失函数,将预测的标签分布

2021-01-07 10:46:05 722 1

原创 Facial Age Estimation by Deep Residual Decision Making-(Resnet+决策森林在年龄估计中应用)

《Facial Age Estimation by Deep Residual Decision Making》深度决策森林深度决策森林 NDF,随机森林可以被用作深度学习网络的最后一层的分类器,通过前面的系统输出的表征数据,然后用随机森林作为分类器进行分类。并且,深度决策森林,将传统随机森林的局部优化改进成通过反向传播算法进行全局优化,随机森林的参数训练可以与前端的深度学习网络进行无缝衔接。创新点1.将ResNet应用到深度决策森林(NDF中)。2.利用基于梯度的技术来可视化NDF的决策过程。

2020-12-28 21:52:39 487

原创 DEX:Deep EXpectation of apparent age from a single image(面部矫正+VGG-16 年龄估计)

年龄估计论文阅读《DEX:Deep EXpectation of apparent age from a single image》网络图Input Image:输入图片Face Detection:使用off-the-shelf人脸检测器获取人脸位置。人脸检测器取-60°到60°,每次间隔5°;取得分最高的那张脸,并相应地将其旋转到正面向上的位置。很少有图片不能找到一张脸。这种情况下,取整个图像。Cropped face:拓展脸图像的大小,在左右两边取其宽度的40%,上下两边取其高度的40%。

2020-12-15 15:27:02 363

原创 overfitting and underfitting详解

overfitting与underfitting的个人思考bias模型预测的平均值和真实值之间的误差。bias高,则意味着模型没有很好的拟合数据集。varience每次模型单独预测的值和模型多次预测的平均值之间的误差。varience高,则意味着模型泛化能力差。underfitting & overfitting我们可以将一个模型看成一个杯子,这个杯子的大小由模型的参数量决定,参数量大,则杯子大;参数量小,则容器小。而数据量则是水。当参数量小,也就是杯子小(相对于水的量),水溢出来了,

2020-10-20 11:34:43 586

原创 年龄估计论文阅读(一篇综述)

论文《Neural networks for facial age estimation : a survey on recent advances》:论文阅读面部年龄估计:应用和挑战应用:刑事调查:根据不同来源收集的年龄信息确定被告。商业:根据一个人的年龄群甚至性别来个性化购物体验。监视和安全:如防止未成年人观看成人电影和其他年龄限制的相关材料。人类识别:可以从以前的图像中辨认出失踪的老人。招聘:确定招聘人员年龄或找到即将达到退休年龄的员工。等等挑战难以估计准确的年龄,因为它依赖

2020-10-12 16:14:45 1092

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除