目录
3 相机的像素精度,物理定位精度,亚像素定位之间的关系和进行像素的固定误差累积
1 亚像素理解
在相机成像的过程中,获得的图像数据是将图像进行了离散化的处理,由于感光元件本身的能力限制,到成像面上每个像素只代表附近的颜色。例如两个感官原件上的像素之间有4.5um的间距,宏观上它们是连在一起的,微观上它们之间还有无数微小的东西存在,这些存在于两个实际物理像素之间的像素,就被称为“亚像素”。亚像素实际上应该是存在的,只是缺少更小的传感器将其检测出来而已,因此只能在软件上将其近似计算出来。
亚像素可以表示为如下图所示,每四个红色点围成的矩形区域为实际原件上的像素点,黑色点为亚像素点:
根据相邻两像素之间插值情况的不同,可以调整亚像素的精度,例如四分之一,就是将每个像素从横向和纵向上当做四个像素点。也就是上面图里的红色点之间有三个黑色点。这样通过亚像素插值的方法可以实现从小矩形到大矩形的映射,从而提高分辨率。
正因为这样的操作,所以在图像超分辨的任务里使用pixel shuffle的方式获得高分辨图像(例如ESPCN)。在一般的反卷积里会存在大量补0的区域,这可能对结果有害。因此pixel shuffle通过亚像素卷积的方式,实现从低分辨图到高分辨图的重构,具体如下所示,通过将多通道feature上的单个像素组合成一个feature上的单位即可,每个feature上的像素就相当于新的feature上的亚像素了。
转载于https://blog.csdn.net/CHNguoshiwushuang/article/details/81155361
2 图像处理中的subpixel是什么意思?
转载于 https://www.zhihu.com/question/56177877/answer/269452316
作者:朴素的贝叶斯
链接:https://www.zhihu.com/question/56177877/answer/269452316
子像素卷积,是一种正常卷积的简化形式,并加了很强的假设,结果就是去除了大量的卷积运算。
子像素卷积的结果一般是一张更大的图片,可用作超分辨率。
一个正常的逆卷积长这样:
逆卷积
把一个3x3的小图片变成一个5X5的大图片。白色虚线区域全填0。
subpixel作者认为,这些白色的填0区域,是无效信息,甚至对求梯度优化有害处。
明明可以直接从原图得到信息,何必非要填0呢。
于是作者搞了这个:
第一个白色矩阵图片是输入层。
第二个、第三个白色张量是隐藏层,做步长为1的正常卷积。
第四个彩色图片,经过子像素卷积,得到最后一张斑斓的大图。
就这样。
超分辨率的效果如下
最上面一排是输入的模糊图像x。
中间是超分辨后的图片f(x)
最下面是对照样例y
3 相机的像素精度,物理定位精度,亚像素定位之间的关系和进行像素的固定误差累积
https://blog.csdn.net/yangdashi888/article/details/51308560