1.两数之和
方法一:暴力枚举
注意第二层循环从i+1开始
class Solution{
public:
vector<int>twoSum(vector<int>&nums,int target){
int n=nums.size();
for(int i=0;i<n;++i){
for(int j=i+1;j<n;++j){
if(nums[i]+nums[j]==target){
return{i,j};
}
}
}
return{};
}
}
复杂度分析:
-
时间复杂度:O(n^2),其中 n是数组中的元素数量。最坏情况下数组中任意两个数都要被匹配一次。
-
空间复杂度:O(1)。
C++11的新特性:
return {}:
表示"返回使用空list-initializer初始化的函数返回类型的对象"。确切的行为取决于返回的对象的类型。
在C++11之前, 你想返回一个string的函数,你可能会这样写:
string get_string() {
return string();
}
在C++11之后,可以这样写:
std::string get_string() {
return {}; // 即返回这个函数所构造出来的对象
}
这里再举个例子:
vector<int> twoSum(vector<int>& nums, int target) {
//...经过一系列操作后构造好了nums这个vector数组
if(target > 10) return {}; //返回一个空的vector<int>对象
else if(target < 5) return nums; //直接返回nums作为对象
else return {1, 2, 3}; //直接构造好vector<int>并将这个对象返回
}
方法二:哈希表
枚举数组中的每一个数 x
,寻找数组中是否存在 target - x
。
注意到方法一的时间复杂度较高的原因是寻找 target - x 的时间复杂度过高。因此,需要一种更优秀的方法,能够快速寻找数组中是否存在目标元素。如果存在,需要找出它的索引。
使用哈希表,可以将寻找 target - x 的时间复杂度降低到从 O(N)降低到 O(1)。
这样我们创建一个哈希表,对于每一个 x,我们首先查询哈希表中是否存在 target - x,
然后将 x 插入到哈希表中,即可保证不会让 x 和自己匹配。
class Solution{
public:
vector<int>twoSum(vector<int>&nums,int target){
unordered_map<int,int>hashtable;
for(int i=0;i<nums.size();++i){
auto it=hashtable.find(target-nums[i]);
if(it!=hashtable.end()){
return{it->second,i};
}
hashtable[nums[i]]=i;
}
return{};
}
复杂度分析:
时间复杂度:O(N),其中 N是数组中的元素数量。对于每一个元素 x,我们可以 O(1)O(1) 地寻找 target - x。
空间复杂度:O(N),其中 N 是数组中的元素数量。主要为哈希表的开销。
unordered_map是一个将key和value关联起来的容器,它可以高效的根据单个key值查找对应的value。
- unordered_map存储元素时是没有顺序的,只是根据key的哈希值,将元素存在指定位置,所以根据key查找单个value时非常高效,平均可以在常数时间内完成。
- unordered_map查询单个key的时候效率比map高,但是要查询某一范围内的key值时比map效率低。
88.合并两个有序数组
报错原因:没有指定数组大小
vector在还没有分配任何空间时还不能像数组一样用下标形式去访问vector的(v[0]也不行)。否则编译通过但报运行错误runtime error!
vector是动态数组,像"vector v"这种跳过分配空间的创建方式是允许的,编译器不会报错,但会运行报错即runtime error。
这种情况需要先push_back()或v={1,2}等形式给其分配了空间后,才能用[ ]形式访问!增加数组大小之后成功运行→nums.resize(n).
数组越界:但是没有找到原因
方法一:直接合并后排序:
class Solution{
public:
void merge(vector<int>&nums1,int m,vector<int>&nums2,int n)
for(int i=0;i!=n;++i){
nums1[m+i]=nums2[i];
}
sort(nums1.begin(),nums1.end());
}
套用快速排序的时间复杂度即可,平均情况为 O((m+n)log(m+n))。
套用快速排序的空间复杂度即可,平均情况为 O(log(m+n))。
方法二:双指针
方法一没有利用数组 nums1 与 nums2 已经被排序的性质。为了利用这一性质,我们可以使用双指针方法。这一方法将两个数组看作队列,每次从两个数组头部取出比较小的数字放到结果中。
class Solution{
public:
void merge(vector<int>& nums1, int m, vector<int>& nums2, int n) {
int p1 = 0, p2 = 0;
int sorted[m + n];
int cur;
while (p1 < m || p2 < n) {
if (p1 == m) {
cur = nums2[p2++];
} else if (p2 == n) {
cur = nums1[p1++];
} else if (nums1[p1] < nums2[p2]) {
cur = nums1[p1++];
} else {
cur = nums2[p2++];
}
sorted[p1 + p2 - 1] = cur;
}
for (int i = 0; i != m + n; ++i) {
nums1[i] = sorted[i];
}
}
}
复杂度分析
时间复杂度:O(m+n)。
指针移动单调递增,最多移动 m+n次,因此时间复杂度为 O(m+n)。
空间复杂度:O(m+n)。
需要建立长度为 m+n 的中间数组 sorted。
方法三:逆向双指针
方法二中,之所以要使用临时变量,是因为如果直接合并到数组 nums1 中,nums1 中的元素可能会在取出之前被覆盖。那么如何直接避免覆盖 nums1 中的元素呢?
nums1 的后半部分是空的,可以直接覆盖而不会影响结果。
因此可以指针设置为从后向前遍历,每次取两者之中的较大者放进 nums1 的最后面。
严格来说,在此遍历过程中的任意一个时刻,nums1 数组中有( m−p1−1 )个元素被放入 nums1 的后半部,nums2数组中有(n−p2−1)个元素被放入 nums1的后半部,而在指针 p1的后面,nums1 数组有 (m+n−p1−1)个位置。由于
(m+n−p1−1)≥(m−p1−1)+(n−p2−1)等价于p2≥−1永远成立,
因此 p1后面的位置永远足够容纳被插入的元素,不会产生 p1 的元素被覆盖的情况。
class Solution {
public:
void merge(vector<int>& nums1, int m, vector<int>& nums2, int n) {
int p1 = m - 1, p2 = n - 1;
int tail = m + n - 1;
int cur;
while (p1 >= 0 || p2 >= 0) {
if (p1 == -1) {
cur = nums2[p2--];
} else if (p2 == -1) {
cur = nums1[p1--];
} else if (nums1[p1] > nums2[p2]) {
cur = nums1[p1--];
} else {
cur = nums2[p2--];
}
nums1[tail--] = cur;
}
}
};