C + + 高精度 C++高精度 C++高精度
Python和Java不需要高精度,Python整数可以无限大,Java有大整数类。
C++高精度就是用数组存储很大的数,然后模拟手算(比如加法中的进位)的过程。
要注意的一点就是数组先存低位,方便进位、借位。
直接看题目。
一、高精度加法
给定两个正整数(不含前导 0 0 0),计算它们的和。
输入格式
共两行,每行包含一个整数。
输出格式
共一行,包含所求的和。
数据范围
1 ≤ 整数长度 ≤ 100000 1≤整数长度≤100000 1≤整数长度≤100000
输入样例:
12
23
输出样例:
35
代码:
#include <iostream>
#include <algorithm>
#include <vector>
#include <string>
using namespace std;
//这里的函数的参数引用是为了加快速度。如果不是引用,就会copy整个vector
vector<int> add(vector<int> &A, vector<int> &B)
{
vector<int> C;
int t = 0;
for (int i = 0; i < A.size() || i < B.size(); i++)
{
if (i < A.size())
t += A[i];
if (i < B.size())
t += B[i];
C.push_back(t % 10);
t /= 10;
}
if (t)
C.push_back(t);
return C;
}
int main()
{
vector<int> A, B;
string a, b;
cin >> a >> b;
for (int i = a.size() - 1; i >= 0; i--)
A.push_back(a[i] - '0');
for (int i = b.size() - 1; i >= 0; i--)
B.push_back(b[i] - '0');
auto C = add(A, B);
for (int i = C.size() - 1; i >= 0; i--)
cout << C[i];
return 0;
}
二、高精度减法
给定两个正整数(不含前导 0 0 0),计算它们的差,计算结果可能为负数。
输入格式
共两行,每行包含一个整数。
输出格式
共一行,包含所求的差。
数据范围
1 ≤ 整数长度 ≤ 1 0 5 1≤整数长度≤10^5 1≤整数长度≤105
输入样例:
32
11
输出样例:
21
解题:
解题思路就是转换成大数减小数(相对小),再按照减法借位的规则模拟即可。
#include <iostream>
#include <algorithm>
#include <vector>
#include <string>
using namespace std;
bool cmp(vector<int> &A, vector<int> &B) //判断哪个数更小
{
if (A.size() != B.size())
return A.size() > B.size();
for (int i = A.size() - 1; i >= 0; i--)
{
if (A[i] != B[i])
return A[i] > B[i];
}
return true;
}
vector<int> sub(vector<int> &A, vector<int> &B)
{
vector<int> C;
for (int i = 0, t = 0; i < A.size(); i++)
{
t = A[i] - t;
if (i < B.size())
{
t -= B[i];
}
C.push_back((t + 10) % 10);
if (t < 0)
t = 1;
else
t = 0;
}
/*
这一步去除结果的前导0
加法中不存在这个问题,加法不会得到前导0
*/
while (C.size() > 1 && C.back() == 0)
C.pop_back();
return C;
}
int main()
{
string a, b;
cin >> a >> b;
vector<int> A, B;
for (int i = a.size() - 1; i >= 0; i--)
A.push_back(a[i] - '0');
for (int i = b.size() - 1; i >= 0; i--)
B.push_back(b[i] - '0');
vector<int> C;
if (cmp(A, B))
C = sub(A, B);
else
{
cout << "-";
C = sub(B, A);
}
for (int i = C.size() - 1; i >= 0; i--)
cout << C[i];
return 0;
}
三、高精度乘法
给定两个非负整数(不含前导 0 0 0) A A A 和 B B B,请你计算 A × B A×B A×B 的值。
输入格式
共两行,第一行包含整数 A A A,第二行包含整数 B B B。
输出格式
共一行,包含 A × B A×B A×B 的值。
数据范围
1
≤
A
的长度
≤
100000
1≤A的长度≤100000
1≤A的长度≤100000
0
≤
B
≤
10000
0≤B≤10000
0≤B≤10000
输入样例:
2
3
输出样例:
6
代码:
#include <iostream>
#include <vector>
using namespace std;
vector<int> mul(vector<int> &A, int b)
{
vector<int> C;
int t = 0; // 进位
for (int i = 0; i < A.size() || t; i++) // 有可能进位还有剩下的,要把进位t全部push之后再退出循环
{
if (i < A.size())
t += A[i] * b;
C.push_back(t % 10);
t /= 10;
}
while (C.size() > 1 && C.back() == 0) // 消除前导0,当b等于0时有前导0
C.pop_back();
return C;
}
int main()
{
string a;
int b;
cin >> a >> b;
vector<int> A;
for (int i = a.size() - 1; i >= 0; i--)
A.push_back(a[i] - '0');
auto C = mul(A, b);
for (int i = C.size() - 1; i >= 0; i--)
cout << C[i];
return 0;
}
四、高精度除法
给定两个非负整数(不含前导 0 0 0) A , B A,\ B A, B,请你计算 A / B A/B A/B 的商和余数。
输入格式
共两行,第一行包含整数 A A A,第二行包含整数 B B B。
输出格式
共两行,第一行输出所求的商,第二行输出所求余数。
数据范围
1
≤
A
的长度
≤
100000
,
1≤A的长度≤100000,
1≤A的长度≤100000,
1
≤
B
≤
10000
,
1≤B≤10000,
1≤B≤10000,
B
一定不为
0
B 一定不为 0
B一定不为0
输入样例:
7
2
输出样例:
3
1
代码:
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
vector<int> div(vector<int> &A, int b, int &r)
{
vector<int> C;
for (int i = A.size() - 1; i >= 0; i--)
{
r = r * 10 + A[i];
C.push_back(r / b);
r = r % b;
}
reverse(C.begin(), C.end());
while (C.size() > 1 && C.back() == 0) C.pop_back(); //去掉前导0
return C;
}
int main()
{
string a;
int b;
cin >> a >> b;
vector<int> A;
for (int i = a.size() - 1; i >= 0; i--) A.push_back(a[i] - '0');
int r = 0;
auto C = div(A, b, r);
for (int i = C.size() - 1; i >= 0; i--) cout << C[i];
cout << endl << r << endl;
return 0;
}