C++高精度【C++|AcWing|算法】

C + + 高精度 C++高精度 C++高精度

Python和Java不需要高精度,Python整数可以无限大,Java有大整数类。

C++高精度就是用数组存储很大的数,然后模拟手算(比如加法中的进位)的过程。
要注意的一点就是数组先存低位,方便进位、借位。

直接看题目。

一、高精度加法

AcWing_791 高精度加法

给定两个正整数(不含前导 0 0 0),计算它们的和。

输入格式

共两行,每行包含一个整数。

输出格式

共一行,包含所求的和。

数据范围

1 ≤ 整数长度 ≤ 100000 1≤整数长度≤100000 1整数长度100000

输入样例:
12
23
输出样例:
35
代码:
#include <iostream>
#include <algorithm>
#include <vector>
#include <string>
using namespace std;

//这里的函数的参数引用是为了加快速度。如果不是引用,就会copy整个vector
vector<int> add(vector<int> &A, vector<int> &B)
{
    vector<int> C;
    int t = 0;
    for (int i = 0; i < A.size() || i < B.size(); i++)
    {
        if (i < A.size())
            t += A[i];
        if (i < B.size())
            t += B[i];
        C.push_back(t % 10);
        t /= 10;
    }
    if (t)
        C.push_back(t);
    return C;
}

int main()
{
    vector<int> A, B;
    string a, b;
    cin >> a >> b;

    for (int i = a.size() - 1; i >= 0; i--)
        A.push_back(a[i] - '0');
    for (int i = b.size() - 1; i >= 0; i--)
        B.push_back(b[i] - '0');

    auto C = add(A, B);
    for (int i = C.size() - 1; i >= 0; i--)
        cout << C[i];

    return 0;
}

二、高精度减法

给定两个正整数(不含前导 0 0 0),计算它们的差,计算结果可能为负数。

输入格式

共两行,每行包含一个整数。

输出格式

共一行,包含所求的差。

数据范围

1 ≤ 整数长度 ≤ 1 0 5 1≤整数长度≤10^5 1整数长度105

输入样例:
32
11
输出样例:
21
解题:

解题思路就是转换成大数减小数(相对小),再按照减法借位的规则模拟即可。

#include <iostream>
#include <algorithm>
#include <vector>
#include <string>
using namespace std;

bool cmp(vector<int> &A, vector<int> &B)     //判断哪个数更小  
{
    if (A.size() != B.size())
        return A.size() > B.size();
    for (int i = A.size() - 1; i >= 0; i--)
    {
        if (A[i] != B[i])
            return A[i] > B[i];
    }
    return true;
}

vector<int> sub(vector<int> &A, vector<int> &B)
{
    vector<int> C;

    for (int i = 0, t = 0; i < A.size(); i++)
    {
        t = A[i] - t;
        if (i < B.size())
        {
            t -= B[i];
        }
        C.push_back((t + 10) % 10);
        if (t < 0)
            t = 1;
        else
            t = 0;
    }

    /*
       这一步去除结果的前导0
       加法中不存在这个问题,加法不会得到前导0
    */
    while (C.size() > 1 && C.back() == 0)     
        C.pop_back();     

    return C;
}

int main()
{
    string a, b;
    cin >> a >> b;

    vector<int> A, B;
    for (int i = a.size() - 1; i >= 0; i--)
        A.push_back(a[i] - '0');
    for (int i = b.size() - 1; i >= 0; i--)
        B.push_back(b[i] - '0');

    vector<int> C;
    if (cmp(A, B))
        C = sub(A, B);
    else
    {
        cout << "-";
        C = sub(B, A);
    }

    for (int i = C.size() - 1; i >= 0; i--)
        cout << C[i];

    return 0;
}

三、高精度乘法

Acwing_795 高精度除法

给定两个非负整数(不含前导 0 0 0 A A A B B B,请你计算 A × B A×B A×B 的值。

输入格式

共两行,第一行包含整数 A A A,第二行包含整数 B B B

输出格式

共一行,包含 A × B A×B A×B 的值。

数据范围

1 ≤ A 的长度 ≤ 100000 1≤A的长度≤100000 1A的长度100000
0 ≤ B ≤ 10000 0≤B≤10000 0B10000

输入样例:
2
3
输出样例:
6
代码:
#include <iostream>
#include <vector>
using namespace std;

vector<int> mul(vector<int> &A, int b)
{
    vector<int> C;
    int t = 0; // 进位
    for (int i = 0; i < A.size() || t; i++)  // 有可能进位还有剩下的,要把进位t全部push之后再退出循环
    {
        if (i < A.size())
            t += A[i] * b;
        C.push_back(t % 10);
        t /= 10;
    }

    while (C.size() > 1 && C.back() == 0)   // 消除前导0,当b等于0时有前导0
        C.pop_back();

    return C;
}

int main()
{
    string a;
    int b;
    cin >> a >> b;

    vector<int> A;
    for (int i = a.size() - 1; i >= 0; i--)
        A.push_back(a[i] - '0');

    auto C = mul(A, b);
    for (int i = C.size() - 1; i >= 0; i--)
        cout << C[i];

    return 0;
}

四、高精度除法

AcWing_794 高精度除法

给定两个非负整数(不含前导 0 0 0 A ,   B A,\ B A, B,请你计算 A / B A/B A/B 的商和余数。

输入格式

共两行,第一行包含整数 A A A,第二行包含整数 B B B

输出格式

共两行,第一行输出所求的商,第二行输出所求余数。

数据范围

1 ≤ A 的长度 ≤ 100000 , 1≤A的长度≤100000, 1A的长度100000,
1 ≤ B ≤ 10000 , 1≤B≤10000, 1B10000,
B 一定不为 0 B 一定不为 0 B一定不为0

输入样例:
7
2
输出样例:
3
1
代码:
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

vector<int> div(vector<int> &A, int b, int &r)
{
    vector<int> C;

    for (int i = A.size() - 1; i >= 0; i--)
    {
        r = r * 10 + A[i];
        C.push_back(r / b);
        r = r % b;
    }

    reverse(C.begin(), C.end());
    while (C.size() > 1 && C.back() == 0) C.pop_back();  //去掉前导0
    return C;
}

int main()
{
    string a;
    int b;
    cin >> a >> b;

    vector<int> A;
    for (int i = a.size() - 1; i >= 0; i--) A.push_back(a[i] - '0');

    int r = 0;
    auto C = div(A, b, r);

    for (int i = C.size() - 1; i >= 0; i--) cout << C[i];
    cout << endl << r << endl;

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值