Hive导入数据的五种方法

本文介绍了如何在Hive中使用Load、Insert、AsSelect、Location和Import五种方式加载数据,包括数据移动规则、语法细节和注意事项,如数据类型的自动转换以及OVERWRITE选项的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        在Hive中建表成功之后,就会在HDFS上创建一个与之对应的文件夹,且文件夹名字就是表名; 文件夹父路径是由参数hive.metastore.warehouse.dir控制,默认值是/user/hive/warehouse; 也可以在建表的时候使用location语句指定任意路径。

        不管路径在哪里,只有把数据文件移动到对应的表文件夹下面,Hive才能映射解析成功; 最原始暴力的方式就是使用hadoop fs –put  |  -mv等方式直接将数据移动到表文件夹下; 但是,Hive官方推荐使用hive命令将数据加载到表中。

本篇文章介绍五种导入数据的方法:Load 加载数据 、Insert插入数据、 As Select加载数据、 Location加载数据、 Import加载数据

一、Load加载数据

Load英文单词的含义为:加载、装载;

所谓加载是指:将数据文件移动到与Hive表对应的位置,移动时是纯复制、移动操作。

纯复制、移动指在数据load加载到表中时,Hive不会对表中的数据内容进行任何转换,任何操作。

LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]

语法规则

语法规则之filepath

filepath表示待移动数据的路径。可以指向文件(在这种情况下,Hive将文件移动到表中),也可以指向目录(在这种情况下,Hive将把该目录中的所有文件移动到表中)。

filepath文件路径支持下面三种形式,要结合LOCAL关键字一起考虑:

相对路径,例如:project/data1

绝对路径,例如:/home/huser/project/data1

具有schema的完整URI,例如:hdfs://localhost:9000/user/hive/project/data1

语法规则之LOCAL

指定LOCAL, 将在本地文件系统中查找文件路径。

若指定相对路径,将相对于用户的当前工作目录进行解释;

用户也可以为本地文件指定完整的URI-例如:file://user/hive/project/data1。

没有指定LOCAL关键字

如果filepath指向的是一个完整的URI,会直接使用这个URI;

Hive会使用在hadoop配置文件中参数fs.default.name指定的(一般都是HDFS)。

LOCAL本地是哪里?

本地文件系统指的是Hiveserver2服务所在机器的本地Linux文件系统,不是Hive客户端所在的本地文件系统。

语法规则之OVERWRITE

如果使用了OVERWRITE关键字,则目标表(或者分区)中的已经存在的数据会被删除,然后再将filepath指向的文件/目录中的内容添加到表/分区中。

代码示例

二、Insert插入数据

insert+select

insert+select表示:将后面查询返回的结果作为内容插入到指定表中,注意OVERWRITE将覆盖已有数据。

需要保证查询结果列的数目和需要插入数据表格的列数目一致

如果查询出来的数据类型和插入表格对应的列数据类型不一致,将会进行转换,但是不能保证转换一定成功,转换失败的数据将会为NULL。

INSERT OVERWRITE TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...)] select_statement1 FROM from_statement;
INSERT INTO TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...)] select_statement1 FROM from_statement;

multiple inserts多重插入

翻译为多次插入,多重插入,其核心功能是:

一次扫描,多次插入。 语法目的就是减少扫描的次数,在一次扫描中。完成多次insert操作。

三、As Select加载数据

创建表的同时,可以通过查询语句As Select把已有表中的数据加载到新创建的表中。这种加载数据的方式在创建表时不需要指定列名。

四、Location加载数据

创建表时通过Location指定加载路径来加载数据。这里Location指定数据文件存放位置,不管是通过Select方式还是通过Load方式加载的数据都存放在这个目录下。

五、Import加载数据

通过Import方式可以把数据加载到指定Hive表中。但是这种方法需要先用Export导出后,再将数据导入。

<think>好的,我现在需要帮助用户解决在Hive插入数据时的配置设置或问题。首先,我要回忆一下Hive数据插入方式,比如INSERT INTO和LOAD DATA,还有分区表的情况。可能用户在使用INSERT时遇到了性能问题或者配置错误,比如动态分区的问题,或者权限不足之类的。 然后,我应该检查常见的配置参数,比如hive.exec.dynamic.partition,这个在动态分区插入时必须开启。还有mapreduce作业相关的内存设置,如果数据量大,可能需要调整map和reduce的内存分配,避免OOM错误。另外,用户可能遇到文件格式的问题,比如向ORC表插入数据时需要配置正确的SerDe。 接下来,权限问题也很重要,比如HDFS目录的写入权限,如果用户没有权限,插入会失败。需要提醒用户检查目标表的HDFS路径权限。还有事务支持,如果用户使用的是ACID表,需要确保Hive配置了事务相关的参数,比如hive.support.concurrency为true。 可能用户还遇到了小文件问题,多次插入导致小文件增多,这时候需要合并输出文件,可以用hive.merge相关的参数来优化。还有日志中的具体错误信息,比如权限拒绝或者动态分区模式未设置,需要指导用户查看日志并调整配置。 最后,应该总结一下常见的解决步骤:检查动态分区配置,调整内存参数,确认文件格式和权限,处理事务配置,优化小文件问题。同时,提醒用户参考Hive的官方文档和相关资料,确保配置的正确性。可能还需要举一些配置示例,比如设置hive.exec.dynamic.partition.mode为nonstrict,或者调整mapreduce的内存参数。</think>### Hive数据插入配置与常见问题解决指南 #### 一、数据插入基础方法 1. **标准插入语法** ```sql INSERT INTO TABLE target_table SELECT ... FROM source_table; ``` 适用于小规模数据插入,执行时会启动MapReduce作业[^1]。 2. **批量加载数据** 通过HDFS直接写入数据目录(需要与表格式匹配): ```bash hdfs dfs -put /local/path/data.csv /user/hive/warehouse/target_table ``` #### 二、关键配置参数 | 配置项 | 推荐值 | 作用 | |--------|--------|------| | `hive.exec.dynamic.partition` | true | 启用动态分区功能 | | `hive.exec.dynamic.partition.mode` | nonstrict | 允许全动态分区插入 | | `hive.merge.mapredfiles` | true | 合并小文件输出 | | `hive.exec.max.dynamic.partitions` | 10000 | 最大动态分区数 | | `mapreduce.map.memory.mb` | 4096 | 调整Map任务内存 | | `mapreduce.reduce.memory.mb` | 8192 | 调整Reduce任务内存 | #### 三、典型问题解决方案 1. **动态分区错误** **现象**:`FAILED: SemanticException [Error 10096]: Dynamic partition strict mode requires...` **修复步骤**: ```sql SET hive.exec.dynamic.partition=true; SET hive.exec.dynamic.partition.mode=nonstrict; ``` 2. **内存溢出问题** **现象**:`Container killed by YARN for exceeding memory limits` **优化方案**: ```sql SET mapreduce.map.memory.mb=8192; SET mapreduce.reduce.memory.mb=16384; SET hive.tez.container.size=16384; -- 使用Tez引擎时 ``` 3. **文件格式冲突** **现象**:`Cannot insert into table with file format:TextFile`(目标表为ORC格式时) **解决方法**: ```sql CREATE TABLE target_table(...) STORED AS ORC; INSERT INTO target_table SELECT ... FROM text_source_table; ``` 4. **权限错误** **现象**:`Permission denied: user=user1, access=WRITE...` **处理流程**: ```bash hdfs dfs -chmod -R 755 /user/hive/warehouse/target_table hdfs dfs -chown -R hive:hive /user/hive/warehouse ``` #### 四、性能优化技巧 1. **启用向量化查询**(Hive 0.13+) ```sql SET hive.vectorized.execution.enabled=true; SET hive.vectorized.execution.reduce.enabled=true; ``` 2. **合并小文件输出** ```sql SET hive.merge.mapfiles=true; SET hive.merge.mapredfiles=true; SET hive.merge.size.per.task=256000000; SET hive.merge.smallfiles.avgsize=16000000; ``` 3. **事务表配置**(Hive 3.0+ ACID表) ```sql SET hive.support.concurrency=true; SET hive.txn.manager=org.apache.hadoop.hive.ql.lockmgr.DbTxnManager; ``` #### 五、调试建议 1. 查看详细日志: ```bash tail -f /tmp/{user}/hive.log ``` 2. 使用EXPLAIN分析执行计划: ```sql EXPLAIN INSERT INTO TABLE target_table SELECT ...; ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小粥的编程笔记

你的鼓励将是我创造的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值