CF 1701 D. Permutation Restoration 贪心 1900

2 篇文章 0 订阅

题意:有一个全排列数组 a,已知数组b, bi = ⌊i / ai⌋。求出任意一个符合的数组a。

思路:通过 bi = ⌊i / ai⌋,可以推到出 ai > i / (bi + 1) 并且 ai <= i / bi。对于数组a中每一个数我们都有一个取值范围,将所有范围按左边界排序。维护一个集合(也可以用优先队列),从 1 到 n 遍历,每次将左边界等于 i 的取值范围的右边界放入集合。每次贪心取出最小的右边界,这个区间对应的 a 就是 i。因为集合中的所有取值范围左边界都是小于等于 i ,最小的右边界也一定大于等于 i,如果最小的右边界小于 i,那么往后遍历 i 一直增大,那么这个区间就永远不满足条件,就会多出一个区间,题目就无解,但是题目保证有解。

代码:

#include<bits/stdc++.h>
#define pb push_back
using namespace std;
typedef long long ll;
typedef pair<int, int> PII;
const int N = 5e5 + 10, P = 1e9 + 7, mod = 998244353;
PII a[N];
int b[N], ans[N];
void solve(){
	int n;
	cin >> n;
	for(int i = 1; i <= n; i++){
		cin >> b[i];
		a[i] = {i / (b[i] + 1) + 1, i};
	}
	sort(a + 1, a + 1 + n);
	set<PII>s;
	int j = 1;
	for(int i = 1; i <= n; i++){
		while(a[j].first == i && j <= n){
			int id = a[j++].second;
			s.insert({b[id] ? id / b[id] : n, id});
		}
		ans[s.begin() -> second] = i;
		s.erase(s.begin());
	}
	for(int i = 1; i <= n; i++) cout << ans[i] << " ";
	cout << endl;
}                 
int main(){
	ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
	int t;
	cin >>t;
	while(t--){
		solve();
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值