题意:有一个全排列数组 a,已知数组b, bi = ⌊i / ai⌋。求出任意一个符合的数组a。
思路:通过 bi = ⌊i / ai⌋,可以推到出 ai > i / (bi + 1) 并且 ai <= i / bi。对于数组a中每一个数我们都有一个取值范围,将所有范围按左边界排序。维护一个集合(也可以用优先队列),从 1 到 n 遍历,每次将左边界等于 i 的取值范围的右边界放入集合。每次贪心取出最小的右边界,这个区间对应的 a 就是 i。因为集合中的所有取值范围左边界都是小于等于 i ,最小的右边界也一定大于等于 i,如果最小的右边界小于 i,那么往后遍历 i 一直增大,那么这个区间就永远不满足条件,就会多出一个区间,题目就无解,但是题目保证有解。
代码:
#include<bits/stdc++.h>
#define pb push_back
using namespace std;
typedef long long ll;
typedef pair<int, int> PII;
const int N = 5e5 + 10, P = 1e9 + 7, mod = 998244353;
PII a[N];
int b[N], ans[N];
void solve(){
int n;
cin >> n;
for(int i = 1; i <= n; i++){
cin >> b[i];
a[i] = {i / (b[i] + 1) + 1, i};
}
sort(a + 1, a + 1 + n);
set<PII>s;
int j = 1;
for(int i = 1; i <= n; i++){
while(a[j].first == i && j <= n){
int id = a[j++].second;
s.insert({b[id] ? id / b[id] : n, id});
}
ans[s.begin() -> second] = i;
s.erase(s.begin());
}
for(int i = 1; i <= n; i++) cout << ans[i] << " ";
cout << endl;
}
int main(){
ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t;
cin >>t;
while(t--){
solve();
}
return 0;
}