题意:给出两个点的坐标,找到一个点,使这三个点构成的三角形面积最小,三个点的坐标均为整数。
思路:设已知的向量𝐴𝐵 = (𝑥, 𝑦), 未知的向量𝐴𝐶 = (𝑢, 𝑣),那么面积 𝑆 = |𝑥𝑣 −𝑦𝑢| / 2。绝对值里通过扩展欧几里得求出u,v使得绝对值里的值最小等于gcd(x,y)。
代码:
#include<bits/stdc++.h>
#define pb push_back
#define all(x) x.begin(), x.end()
using namespace std;
typedef long long ll;
typedef pair<ll, int> PII;
const int N = 3e5 + 10, P = 1e9 + 7, mod = 998244353;
void exgcd(int a, int b, int &x, int &y) {
if(!b) {
x = 1, y = 0;
return;
}
exgcd(b, a % b, y, x);
y -= a / b * x;
return;
}
void solve() {
int x1, y1, x2, y2;
cin >> x1 >> y1 >> x2 >> y2;
int a = x2 - x1, b = y1 - y2;
int f1 = 1, f2 = 1;
if(a < 0) f1 = -1, a = -a;
if(b < 0) f2 = -1, b = -b;
int u, v;
exgcd(a, b, v, u);
cout << u * f2 + x1 << " " << v * f1 + y1 << endl;
}
int main(){
ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int tt = 1;
cin >> tt;
while(tt--) {
solve();
}
return 0;
}