CF 1696 E. Placing Jinas 组合数 2000

4 篇文章 0 订阅

题意:有一个长度为 n + 1 的非递增数组 a,在二维平面中,对于任意正整数 x,y 当 x < ay(y > n 时 ay = 0)时 x,y 为白色方格,最初在(0,0)有一个玩偶,当我们删除一个玩偶时,(x + 1,y)和(x,y +1)增加一个玩偶,问需要多少次可以删光所有白色方格中的玩偶。

思路:用 f(i,j)表示点 i,j 需要删除的玩偶的个数,f(i,j)= f(i - 1,j)+ f(i,j - 1)。可以把这个dp的过程看成从(0,0)出发走到(i,j)有多少种可能。那么 f(i,j)= c(i + j,i)。我们可以通过公式快速的计算出第 i 列f(i,j)的和为c(i + ai,i + 1)。遍历一遍 ai 就能求出答案。

代码

#include<bits/stdc++.h>
#define pb push_back
using namespace std;
typedef long long ll;
typedef pair<int, int> PII;
const int N = 4e5 + 10, P = 1e9 + 7, mod = 998244353;
int a[N];
int fact[N], infact[N];
ll qmi(int a, int k) {
    ll res = 1;
    while (k) {
        if (k & 1) res = (ll)res * a % P;
        a = (ll)a * a % P;
        k >>= 1;
    }
    return res;
}
ll c(int a, int b){
	return (ll)fact[a] * infact[b] % P * infact[a - b] % P;
}
void solve(){
	fact[0] = infact[0] = 1;
	for (int i = 1; i < N; i ++ ){
        fact[i] = (ll)fact[i - 1] * i % P;
        infact[i] = (ll)infact[i - 1] * qmi(i, P - 2) % P;
    }
	int n; 
	cin >> n;
	for(int i = 0; i <= n; i++) cin >> a[i]; 
	ll ans = 0;
	for(int i = 0; i <= n; i++){
		ans = (ans + c(i + a[i], i + 1)) % P;
	}
	cout << ans << endl;
}                 
int main(){
	ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
	int t;
	//cin >> t;
	//while(t--) {
		solve();
	//}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值