题意:有一个长度为 n + 1 的非递增数组 a,在二维平面中,对于任意正整数 x,y 当 x < ay(y > n 时 ay = 0)时 x,y 为白色方格,最初在(0,0)有一个玩偶,当我们删除一个玩偶时,(x + 1,y)和(x,y +1)增加一个玩偶,问需要多少次可以删光所有白色方格中的玩偶。
思路:用 f(i,j)表示点 i,j 需要删除的玩偶的个数,f(i,j)= f(i - 1,j)+ f(i,j - 1)。可以把这个dp的过程看成从(0,0)出发走到(i,j)有多少种可能。那么 f(i,j)= c(i + j,i)。我们可以通过公式快速的计算出第 i 列f(i,j)的和为c(i + ai,i + 1)。遍历一遍 ai 就能求出答案。
代码
#include<bits/stdc++.h>
#define pb push_back
using namespace std;
typedef long long ll;
typedef pair<int, int> PII;
const int N = 4e5 + 10, P = 1e9 + 7, mod = 998244353;
int a[N];
int fact[N], infact[N];
ll qmi(int a, int k) {
ll res = 1;
while (k) {
if (k & 1) res = (ll)res * a % P;
a = (ll)a * a % P;
k >>= 1;
}
return res;
}
ll c(int a, int b){
return (ll)fact[a] * infact[b] % P * infact[a - b] % P;
}
void solve(){
fact[0] = infact[0] = 1;
for (int i = 1; i < N; i ++ ){
fact[i] = (ll)fact[i - 1] * i % P;
infact[i] = (ll)infact[i - 1] * qmi(i, P - 2) % P;
}
int n;
cin >> n;
for(int i = 0; i <= n; i++) cin >> a[i];
ll ans = 0;
for(int i = 0; i <= n; i++){
ans = (ans + c(i + a[i], i + 1)) % P;
}
cout << ans << endl;
}
int main(){
ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t;
//cin >> t;
//while(t--) {
solve();
//}
return 0;
}