一个序列的 宽度 定义为该序列中最大元素和最小元素的差值。
给你一个整数数组 nums ,返回 nums 的所有非空 子序列 的 宽度之和 。由于答案可能非常大,请返回对 109 + 7 取余 后的结果。
子序列 定义为从一个数组里删除一些(或者不删除)元素,但不改变剩下元素的顺序得到的数组。例如,[3,6,2,7] 就是数组 [0,3,1,6,2,2,7] 的一个子序列。
示例 1:
输入:nums = [2,1,3]
输出:6
解释:子序列为 [1], [2], [3], [2,1], [2,3], [1,3], [2,1,3] 。
相应的宽度是 0, 0, 0, 1, 1, 2, 2 。
宽度之和是 6 。
示例 2:
输入:nums = [2]
输出:0
提示:
1 <= nums.length <= 105
1 <= nums[i] <= 105
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/sum-of-subsequence-widths
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
方法:数学
思路
让我们试着统计具有最小值 A[i] 和最大值 A[j] 的子序列的数量。
算法
我们可以对数组进行排序,因为这并不会改变答案。对数组进行排序后,我们可以得知有最小值 A[i] 和最大值 A[j] 的子序列的数目是 2j−i−12^{j-i-1}2j−i−1。因此,期望的答案为:
作者:LeetCode
链接:https://leetcode.cn/problems/sum-of-subsequence-widths/solution/zi-xu-lie-kuan-du-zhi-he-by-leetcode/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
class Solution {
public int sumSubseqWidths(int[] A) {
int MOD = 1_000_000_007;
int N = A.length;
Arrays.sort(A);
long[] pow2 = new long[N];
pow2[0] = 1;
for (int i = 1; i < N; ++i)
pow2[i] = pow2[i-1] * 2 % MOD;
long ans = 0;
for (int i = 0; i < N; ++i)
ans = (ans + (pow2[i] - pow2[N-1-i]) * A[i]) % MOD;
return (int) ans;
}
}
作者:LeetCode
链接:https://leetcode.cn/problems/sum-of-subsequence-widths/solution/zi-xu-lie-kuan-du-zhi-he-by-leetcode/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
复杂度分析
时间复杂度:O(NlogN)O(N \log N)O(NlogN),其中 NNN 是 A 的长度。
空间复杂度:O(N)O(N)O(N),pow2 所用的空间。(我们可以通过动态地计算这些乘方将其改进到 O(1)O(1)O(1))。
作者:LeetCode
链接:https://leetcode.cn/problems/sum-of-subsequence-widths/solution/zi-xu-lie-kuan-du-zhi-he-by-leetcode/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
方法一:排序+数学
此题出自第98场周赛第4题。
由于顺序不会影响结果,因此首先排序,得到新数组AAA。
然后经过数学推导,得到结果公式:
ans=∑i=0n−1(2i−2n−i−1)∗Aians = \sum_{i=0}^{n-1} { (2^i - 2^{n-i-1}) * A_i} ans=i=0∑n−1(2i−2n−i−1)∗Ai
公式的具体推导过程请参考官方题解。
作者:ak-bot
链接:https://leetcode.cn/problems/sum-of-subsequence-widths/solution/mei-tian-yi-dao-kun-nan-ti-di-17tian-zi-xzoyd/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
#define LL long long
int MOD = 1000000007;
int POW[100000];
bool init = true;
class Solution {
public:
int sumSubseqWidths(vector<int>& nums) {
sort(nums.begin(),nums.end());
if(init){
POW[0] = 1;
for(int i=1;i<100000;i++) POW[i] = POW[i-1] * 2 % MOD;
init = false;
}
int n=nums.size();
int ans = 0;
for(int i=0;i<n;i++){
int m = POW[i] - POW[n-1-i];
LL d = nums[i];
ans = (ans + (m * d) % MOD) % MOD;
}
return ans;
}
};
作者:ak-bot
链接:https://leetcode.cn/problems/sum-of-subsequence-widths/solution/mei-tian-yi-dao-kun-nan-ti-di-17tian-zi-xzoyd/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。