891. 子序列宽度之和

本文介绍了一种利用数学技巧解决LeetCode题目《序列子序列宽度之和》的方法。通过排序数组并计算特定子序列数量,得出宽度之和,最后返回对1e9+7取余的结果。时间复杂度为O(N log N),空间复杂度O(N)。
摘要由CSDN通过智能技术生成

一个序列的 宽度 定义为该序列中最大元素和最小元素的差值。

给你一个整数数组 nums ,返回 nums 的所有非空 子序列 的 宽度之和 。由于答案可能非常大,请返回对 109 + 7 取余 后的结果。

子序列 定义为从一个数组里删除一些(或者不删除)元素,但不改变剩下元素的顺序得到的数组。例如,[3,6,2,7] 就是数组 [0,3,1,6,2,2,7] 的一个子序列。

示例 1:

输入:nums = [2,1,3]
输出:6
解释:子序列为 [1], [2], [3], [2,1], [2,3], [1,3], [2,1,3] 。
相应的宽度是 0, 0, 0, 1, 1, 2, 2 。
宽度之和是 6 。

示例 2:

输入:nums = [2]
输出:0

提示:

    1 <= nums.length <= 105
    1 <= nums[i] <= 105

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/sum-of-subsequence-widths
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

方法:数学

思路

让我们试着统计具有最小值 A[i] 和最大值 A[j] 的子序列的数量。

算法

我们可以对数组进行排序,因为这并不会改变答案。对数组进行排序后,我们可以得知有最小值 A[i] 和最大值 A[j] 的子序列的数目是 2j−i−12^{j-i-1}2j−i−1。因此,期望的答案为:

作者:LeetCode
链接:https://leetcode.cn/problems/sum-of-subsequence-widths/solution/zi-xu-lie-kuan-du-zhi-he-by-leetcode/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

class Solution {
    public int sumSubseqWidths(int[] A) {
        int MOD = 1_000_000_007;
        int N = A.length;
        Arrays.sort(A);

        long[] pow2 = new long[N];
        pow2[0] = 1;
        for (int i = 1; i < N; ++i)
            pow2[i] = pow2[i-1] * 2 % MOD;

        long ans = 0;
        for (int i = 0; i < N; ++i)
            ans = (ans + (pow2[i] - pow2[N-1-i]) * A[i]) % MOD;

        return (int) ans;
    }
}


作者:LeetCode
链接:https://leetcode.cn/problems/sum-of-subsequence-widths/solution/zi-xu-lie-kuan-du-zhi-he-by-leetcode/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

复杂度分析

    时间复杂度:O(Nlog⁡N)O(N \log N)O(NlogN),其中 NNN 是 A 的长度。

    空间复杂度:O(N)O(N)O(N),pow2 所用的空间。(我们可以通过动态地计算这些乘方将其改进到 O(1)O(1)O(1))。

作者:LeetCode
链接:https://leetcode.cn/problems/sum-of-subsequence-widths/solution/zi-xu-lie-kuan-du-zhi-he-by-leetcode/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

方法一:排序+数学

此题出自第98场周赛第4题。
由于顺序不会影响结果,因此首先排序,得到新数组AAA。
然后经过数学推导,得到结果公式:

ans=∑i=0n−1(2i−2n−i−1)∗Aians = \sum_{i=0}^{n-1} { (2^i - 2^{n-i-1}) * A_i} ans=i=0∑n−1​(2i−2n−i−1)∗Ai​

公式的具体推导过程请参考官方题解。

作者:ak-bot
链接:https://leetcode.cn/problems/sum-of-subsequence-widths/solution/mei-tian-yi-dao-kun-nan-ti-di-17tian-zi-xzoyd/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

#define LL long long
int MOD = 1000000007;
int POW[100000];
bool init = true;

class Solution {
public:
    int sumSubseqWidths(vector<int>& nums) {
        sort(nums.begin(),nums.end());
        if(init){
            POW[0] = 1;
            for(int i=1;i<100000;i++) POW[i] = POW[i-1] * 2 % MOD;
            init = false;
        }
        int n=nums.size();
        int ans = 0;
        for(int i=0;i<n;i++){
            int m = POW[i] - POW[n-1-i];
            LL d = nums[i];
            ans = (ans + (m * d) % MOD) % MOD;
        }
        return ans;
    }
};


作者:ak-bot
链接:https://leetcode.cn/problems/sum-of-subsequence-widths/solution/mei-tian-yi-dao-kun-nan-ti-di-17tian-zi-xzoyd/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值