轻松简单理解阻抗与导纳

本文回顾了初中电学中的电阻、电容和电感的基本概念,探讨了它们与电流和电压之间的线性关系,以及阻抗和导纳的概念,提出了寻求整体电路电压电流综合关系的问题。
摘要由CSDN通过智能技术生成

        在初中,我们就学习过,电阻上流过电流,就会产生电压,流过电阻的电流和电阻两端的电压的大小关系:

U=IR

电流与电压成线性的关系,这个关系就是R,R 是电阻阻值,该式子也可以用另一种表达方式:

I=GU

其中G是电导,与电阻R互为倒数。

除此之外,我们还学习过电容和电感

电容两端的电压与流过电流关系

U=\frac{1}{j\omega C}I

其中j可以理解为电压相位超前于电流90^{o}

与电阻类似,容抗也有另一种表达方式

I=j\omega cU

而电感两端的电压与流过电流关系

U=j\omega LU

其中j可以理解为电压相位超前于电流90^{o}

与电阻类似,容抗也有另一种表达方式

I=\frac{1}{j\omega L}U

在每个电路中,基本上都会有电阻、电容、电感,而电压与电流之间的关系,能不能用一个综合的关系去表示呢?

Z=\frac{\dot{U}}{\dot{I}}=R+j(\omega L-\frac{1}{\omega C})

式中z定义为阻抗,U的向量/I的向量。

而导纳Y就是与阻抗互为倒数

Y=\frac{1}{Z}=\frac{1}{R+j(\omega L-\frac{1}{\omega C})}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值