轻松简单理解阻抗与导纳

本文回顾了初中电学中的电阻、电容和电感的基本概念,探讨了它们与电流和电压之间的线性关系,以及阻抗和导纳的概念,提出了寻求整体电路电压电流综合关系的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        在初中,我们就学习过,电阻上流过电流,就会产生电压,流过电阻的电流和电阻两端的电压的大小关系:

U=IR

电流与电压成线性的关系,这个关系就是R,R 是电阻阻值,该式子也可以用另一种表达方式:

I=GU

其中G是电导,与电阻R互为倒数。

除此之外,我们还学习过电容和电感

电容两端的电压与流过电流关系

U=\frac{1}{j\omega C}I

其中j可以理解为电压相位超前于电流90^{o}

与电阻类似,容抗也有另一种表达方式

I=j\omega cU

而电感两端的电压与流过电流关系

U=j\omega LU

其中j可以理解为电压相位超前于电流90^{o}

与电阻类似,容抗也有另一种表达方式

I=\frac{1}{j\omega L}U

在每个电路中,基本上都会有电阻、电容、电感,而电压与电流之间的关系,能不能用一个综合的关系去表示呢?

Z=\frac{\dot{U}}{\dot{I}}=R+j(\omega L-\frac{1}{\omega C})

式中z定义为阻抗,U的向量/I的向量。

而导纳Y就是与阻抗互为倒数

Y=\frac{1}{Z}=\frac{1}{R+j(\omega L-\frac{1}{\omega C})}

内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值