python:插入合并快速排序,全代码+自动绘图

 结论:快速排序效率最高,合并排序其次,直接插入效率肯定是最低的。

import time
from functools import wraps
from timeit import default_timer as timer
import random
import matplotlib.pyplot as plt

def timefn(fn):
    """计算性能的修饰器"""
    @wraps(fn)
    def measure_time(*args, **kwargs):
        t1 = time.time()
        result = fn(*args, **kwargs)
        t2 = time.time()
        return result
    return measure_time
@timefn

def disort(a):                                # 直接插入排序
    l=len(a)
    for i in range(l):
        temp = a[i]
        j = i-1
        while j >= 0 and a[j] > temp:
            a[j+1] = a[j]
            j = j-1
        a[j+1] = temp
    return a
def mergesort(a):                              # 合并排序功能函数
    l = len(a)
    b = []
    c = []
    b = a[0:l//2+l%2:1]
    c = a[l//2+l%2::1]
    b.sort()
    print(b)
    c.sort()
    print(c)
    a=[]
    i=0
    j=0
    while i<l//2 and j<l//2:                  # 循环条件
        if b[i]>c[j]:
            a.append(c[j])
            j+=1
        else:
            a.append(b[i])
            i+=1
    if i==l//2+l%2:                          # 循环关键部分
        a=a+c[j::1]
    if j==l//2+l%2:                          # 若没有此处的if程序健壮性不强
        a=a+b[i::1]
    return a
def partition(arr, low, high):
    i = (low - 1)  # 最小元素索引
    pivot = arr[high]
    for j in range(low, high):
        # 当前元素小于或等于 pivot
        if arr[j] <= pivot:
            i = i + 1
            arr[i], arr[j] = arr[j], arr[i]
    arr[i + 1], arr[high] = arr[high], arr[i + 1]
    return (i + 1)
# 快速排序函数
def Quick_sort(list):
    """快速排序"""
    if len(list) < 2:
        return list
    # 选取基准,随便选哪个都可以,选中间的便于理解
    mid = list[len(list) // 2]
    # 定义基准值左右两个数列
    left, right = [], []
    # 从原始数组中移除基准值
    list.remove(mid)
    for item in list:
        # 大于基准值放右边
        if item >= mid:
            right.append(item)
        else:
            # 小于基准值放左边
            left.append(item)
    # 使用迭代进行比较
    return Quick_sort(left) + [mid] + Quick_sort(right)
listtime1=[]
listtime2=[]
listtime3=[]
for m in range(1,2002,200):                 # 随机生成测试list
    b=[random.randint(0,1000)for i in range(m)]
    b1=b
    b2=b
    tic = timer()
    mergesort(b1)
    tic1= timer()
    disort(b2)
    tic2=timer()
    Quick_sort(b)
    tic3=timer()
    listtime1.append(tic1 - tic)
    listtime2.append(tic2 - tic1)
    listtime3.append(tic3 - tic2)
y1=listtime1
y2=listtime2
y3=listtime3
print(y1)
print(y2)
print(y3)


def plot_double_lines(n, x, y1, y2, pic_name):         # 绘制图标
    # initialize plot parameters
    print('picture name: %s, len of data: %d' % (pic_name, n))
    plt.rcParams['figure.figsize'] = (10 * 16 / 9, 10)
    plt.subplots_adjust(left=0.06, right=0.94, top=0.92, bottom=0.08)

    # plot curve 1
    plt.plot(x, y1, label='mergesort')

    # plot curve 2
    plt.plot(x, y2, label='disort')

    # plot curve 3
    plt.plot(x, y3, label='quicksort')

    # show the legend
    plt.legend()

    # show the picture
    plt.show()

if __name__ == '__main__':
    xs = range(1,2002,200)
    y1s = listtime1
    y2s = listtime2
    y3s = listtime2
    plot_double_lines(len(xs), xs, y1s, y2s, y3s)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Savor-f

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值